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Preface 

Engineering mathematics serves as the foundation for a broad range of disciplines within science and 

engineering. A solid understanding of its principles is essential for students pursuing fields such as 

engineering, physics, computer science, and applied mathematics. This book is designed to bridge the 

gap between abstract mathematical theory and practical application, providing students with the tools 

and insight required to solve real-world problems with confidence and precision. The purpose of this 

volume is to offer a comprehensive and accessible resource for both learning and teaching core 

concepts in linear algebra and vector spaces—areas that are crucial to many engineering applications. 

It is intended for students across various domains who require a rigorous yet approachable treatment 

of these mathematical topics. 

The content of this book is organized into the following seven chapters: 

1. Matrices (I) 

2. Determinants 

3. Matrices (II) 

4. Systems of Linear Equations 

5. Eigenvalues and Eigenvectors 

6. Vector Spaces 

7. Inner Product Spaces and Orthogonality 

Each chapter has been developed to be as self-contained as possible, allowing instructors the flexibility 

to tailor the order and depth of topics to match their specific course requirements. Prerequisites are 

clearly indicated at the start of each chapter, helping students to navigate the material in a structured 

and logical manner. To enhance the teaching and learning experience, this book incorporates several 

key features: 

 Clarity through Simplicity: Examples are carefully chosen and kept straightforward to ensure 

that students first master the fundamental ideas before moving on to more advanced 

applications. 

 Modular Structure: Each chapter and section is designed to stand alone, giving educators the 

freedom to adapt the material to various teaching styles and academic programs. 

 Self-Contained Presentation: Most topics are fully developed within the text. In the few 

instances where deeper theoretical treatment is beyond the book’s scope, appropriate references 

are provided. 

 Progressive Complexity: Topics are introduced in a gradual, step-by-step fashion—from basic 

principles to more complex ideas—to help students build both understanding and confidence. 

 Standardized Notation: Contemporary and widely accepted notation is used throughout the 

book to ensure consistency and facilitate cross-referencing with other resources. 

This volume is part of an ongoing effort to make engineering mathematics more accessible, relevant, 

and engaging. Feedback from both students and instructors is welcome and appreciated, and will be 

instrumental in guiding improvements in future editions. 

(Dr. Subhabrata Mondal)         10/05/2025 

Assistant Professor,  

Swami Vivekananda University, Kolkata, West Bengal, India 
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Chapter  1 

Matrices (I) 

1.1 Introduction . 

 

Matrix is provides us with a very powerful mathematical tool which has wide application in science and 

technology. In this chapter we have scope to study the matrix over real number only. Many theorems are 

illustrated by a good number of examples so that engineers may feel comfort in using matrix towards any 

of their work. System of linear equations is an interesting part of this chapter. Here we deal with the system 

where number of unknown quantities and number of equations may not be same which may appear in 

several practical problems. We introduce a very scientific method to find whether a system is solvable at 

all and, if solvable, how to solve the system. 

 

 

1.2 Matrices Definition 

 

Matrices are the ordered rectangular array of numbers, which are used to express linear equations. A 

matrix has rows and columns. we can also perform the mathematical operations on matrices such as 

addition, subtraction, multiplication of matrix. Suppose the number of rows is m and columns is n, then 

the matrix is represented as m × n matrix. 

 

1.3 Types of Matrices 

 

There are different types of matrices. Let’s see some of the examples of different types of matrices 

 Square Matrix : A matrix in which the number of rows is equal to the number of columns. 

Example : [
2 1 4
5 6 7
32 1 2

]  is a square matrix of order 3 x 3.  

 Row Matrix and Column Matrix : A matrix having only one row is called a row matrix. 

Example : [2 0 6] is a 1 x 3 row matrix. 

A matrix having only one column is called a column matrix.  

Example :  [
2
0
6
]  is a 3 x 1 column matrix. 
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 Zero matrix / Null matrix : A matrix of any order whose all elements are zero is called a null 

matrix and is denoted by O.  

Example :  [
0 0 0
0 0 0
0 0 0

] 

 Diagonal matrix : A square matrix whose elements except those in the leading diagonal are zero 

is called a diagonal matrix. i.e, 𝑎𝑖𝑗 = 0  for all 𝑖 ≠ 𝑗 .  

Example :  [
6 0 0
0 9 0
0 0 2

] 

 Identity matrix / Unit Matrix : A square matrix  𝐴 = [𝑎𝑖𝑗]𝑛×𝑛  is called  an identity matrix or 

unit matrix if  

(i) 𝑎𝑖𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖𝑖) 𝑎𝑖𝑖 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 

Example :   [
1 0 0
0 1 0
0 0 1

] 

 Upper triangular matrix : A square matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛 is said to be an upper triangular matrix 

if 𝑎𝑖𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 > 𝑗 ; i.e ,  all elements below the main diagonal are zero. 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 ∶ [
6 −1 5
0 9 2
0 0 2

]  

 Lower triangular matrix : A square matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛 is said to be an lower triangular matrix 

if 𝑎𝑖𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑗 ; i.e ,  all elements above the main diagonal are zero. 

Example :  [
6 0 0
2 9 0
8 −1 2

] 

1.4 Algebraic Operations On Matrices : 

 
 Equality of two Matrices : Two matrices A and B are said to be equal if and only if  

(i) A and B have the same order and  

(ii) Each element of A is equal to the corresponding element of B.  

Example : Two Matrices 𝐴 = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

]  𝑎𝑛𝑑 𝐵 =  [
𝑝 𝑞 𝑟
𝑠 𝑡 𝑢

] are equal if  

𝑎 = 𝑝, 𝑏 = 𝑞, 𝑐 = 𝑟, 𝑑 = 𝑠, 𝑒 = 𝑡, 𝑓 = 𝑢  



      
 

A .  3  

 

 Addition of Matrices : Two matrices 𝐴 =  [𝑎𝑖𝑗]𝑚×𝑛
 and 𝐵 =  [𝑏𝑖𝑗]𝑚×𝑛

  are said to be 

conformable for addition if they are of the same order. The sum of the two matrices A and B is 

then defined as the matrix each of whose elements is the sum of the corresponding elements of A 

and B. 

 

A + B = [𝑎𝑖𝑗]𝑚×𝑛
+ [𝑏𝑖𝑗]𝑚×𝑛

= [𝑐𝑖𝑗]𝑚×𝑛
    where 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗  for all i and j. 

 

Example 1: If A = [
2 0 9

−4 1 6
] and B = [

1 7 0
3 −4 −5

] then  

 

A + B =  [
2 + 1 0 + 7 9 + 0

−4 + 3 1 − 4 6 − 5
] = [

3 7 9
−1 −3 1

]  

 

1.5 Properties of Matrix Addition : 

 

(i) Commutativity : For any two matrices A and B of the same order ,  A + B = B + A 

(ii) Associativity : If A, B and  C are three matrices of the same order,  then  

(A + B) + C = A + (B + C) 

(iii) Existence of additive identity : The Null Matrix is the identity element for matrix 

addition.I.e,  

A + O = O + A 

(iv) Existence of additive inverse : For every matrix 𝐴 =  [𝑎𝑖𝑗]𝑚×𝑛
 there exist a matrix −𝐴 =

 [−𝑎𝑖𝑗]𝑚×𝑛
 such that  A + (−A) = O = (−A) + A 

Example 2 :  Find x , y, z and t if    2 [
x z
y t] + 3 [

1 −1
0 0

] = 3 [
3 5
4 6

]. 

Solution :  2 [
x z
y t] + 3 [

1 −1
0 0

] = 3 [
3 5
4 6

] 

or, 2 [
x z
y t] + [

3 −3
0 0

] = [
9 15
12 18

]  

or, 2 [
x z
y t] = [

9 15
12 18

] − [
3 −3
0 0

]  

or, 2 [
x z
y t] = [

9 − 3 15 − (−3)
12 − 0 18 − 0

]    

or, 2 [
x z
y t] = [

6 18
12 18

]  

Or, [
x z
y t] = [

3 9
6 9

]    

Ans : x =  3, y =  6, z =  9, t =  9 

Example 3 : Determine the matrices A and B where  

A + 2B = [
1 2 0
6 −3 3

−5 3 1
]  and 2A − B = [

2 −1 5
2 −1 6
0 1 2

]  

Solution : Given , 
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  A + 2B = [
1 2 0
6 −3 3

−5 3 1
]………. (i) 

2A − B = [
2 −1 5
2 −1 6
0 1 2

] ………….. (ii)  

Multiplying equation (i) by 2 we get,  

 2A + 4B = [
2 4 0
12 −6 6

−10 6 2
] …………..(iii)  

Substracting (ii) from (iii) 

2A + 4B − (2A − B) = [
2 4 0
12 −6 6

−10 6 2
] − [

2 −1 5
2 −1 6
0 1 2

]  

5B =  [
2 − 2 4 − (−1) 0 − 5
12 − 2 −6 − (−1) 6 − 6

−10 − 0 6 − 1 2 − 2

]  

5B = [
0 5 −5
10 −5 0

−10 5 0
]  

B = [
0 1 −1
2 −1 0

−2 1 0
]  

By putting the value of B in (i)  

A + 2 [
0 1 −1
2 −1 0

−2 1 0
] = [

1 2 0
6 −3 3

−5 3 1
]  

A + [
0 2 −2
4 −2 0

−4 2 0
] = [

1 2 0
6 −3 3

−5 3 1
]  

 

A = [
1 2 0
6 −3 3

−5 3 1
] − [

0 2 −2
4 −2 0

−4 2 0
]  

A = [
1 0 2
2 −1 3

−1 1 1
]  

1.6 Multiplication of Matrices by a scalar:  

If 𝐴 = [𝑎𝑖𝑗] be an 𝑚 × 𝑛 matrix and k be any number called a scalar. Then the matrix obtained by 

multiplying every element of A by k is called the scalar multiple of A by k and is denoted by kA. 

Thus, 𝑘𝐴 = [𝑘𝑎𝑖𝑗]𝑚×𝑛
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For Example: if 𝐴 = [
1 2 5

−2 3 4
1 2 −1

]  , 𝑡ℎ𝑒𝑛 3𝐴 = [
3 6 15

−6 9 12
3 6 −3

] 

Properties of scalar multiplication: 

Various properties of scalar multiplication are stated and proved in the following theorem. 

Theorem: If 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛 , 𝐵 = [𝑏𝑖𝑗]𝑚×𝑛
 are two matrices and k, l are scalars, then  

(i) 𝑘(𝐴 + 𝐵) = 𝑘𝐴 + 𝑘𝐵 

(ii) (𝑘 + 𝑙)𝐴 = 𝑘𝐴 + 𝑙𝐴 

(iii) (𝑘𝑙)𝐴 = 𝑘(𝑙𝐴) = 𝑙(𝑘𝐴) 

(iv) (−𝑘)𝐴 = −(𝑘𝐴) = 𝑘(−𝐴) 

(v) 1𝐴 = 𝐴 

(vi) (−1)𝐴 = −𝐴 

1.7 Subtraction of Matrices:   

Definition: For two matrices A and B of the same order, the subtraction of matrix B from matrix 

A is denoted by 𝐴 − 𝐵  and is defined as 𝐴 − 𝐵 = 𝐴 + (−𝐵). 

For Example : 

If 𝐴 = [
−3 2 1
1 −4 7

]   𝑎𝑛𝑑 𝐵 = [
3 5 −2

−1 4 −2
] , 𝑡ℎ𝑒𝑛  

𝐴 − 𝐵 = [
−3 2 1
1 −4 7

] − [
3 5 −2

−1 4 −2
] = [

−3 − 3 2 − 5 1 + 2
1 + 1 −4 − 4 7 + 2

] = [
−6 −3 3
2 −8 9

]. 

𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟒: Find a matrix A such that 𝟐𝑨 − 𝟑𝑩 + 𝟓𝑪 = 𝑶,𝒘𝒉𝒆𝒓𝒆 𝑩 =

[
−𝟐 𝟐 𝟎
𝟑 𝟏 𝟒

]  𝒂𝒏𝒅 𝑪 = [
𝟐 𝟎 −𝟐
𝟕 𝟏 𝟔

] . 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∶ We have,  

2𝐴 − 3𝐵 + 5𝐶 = 𝑂  

2𝐴 = 3𝐵 − 5𝐶  

2𝐴 = 3 [
−2 2 0
3 1 4

] − 5 [
2 0 −2
7 1 6

]  

2𝐴 = [
−6 6 0
9 3 12

] + [
−10 0 10
−35 −5 −30

]  

2𝐴 = [
−6 − 10 6 + 0 0 + 10
9 − 35 3 − 5 12 − 30

]  

2𝐴 = [
−16 6 10
−26 −2 −18

]  

𝐴 =
1

2
[
−16 6 10
−26 −2 −18

]  

𝐴 = [
−8 3 5
−13 −1 −9

]  
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1.8 Multiplication of Matrices: 

Two matrices A and B are said to be conformable for the product AB if the number of columns of A is 

equal to the number of rows in B. That is, if A is of size m x n then B must be of size n x p , then product 

AB would be a matrix of size m x p defined by  

AB = (cij)m ×p  where  

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗+. . . +𝑎𝑖𝑛𝑏𝑛𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1  .  

1.8.1 Properties of Matrix Multiplication:  

(i) Matrix Multiplication is associative: If three matrices A, B and C are conformable for 

multiplication in the order ABC, then (AB)C = A(BC) = ABC. 

(ii) Matrix Multiplication is distributive with respect to addition of matrices:  

A(B+C) = AB + AC holds good for the matrices A , B and C provided that they are 

conformable for the multiplication and the sum. 

(iii) Matrix multiplication in general is non-commutative: 𝐴𝐵 ≠ 𝐵𝐴 , Although both AB and BA 

may be defined. 

(iv) If AB is a null matrix, that is AB = O, it does not necessarily mean that either A or B should 

be null matrix. 

Example 5: Let 𝑨 = [
𝟏 −𝟐 𝟑
𝟑 𝟐 −𝟏

]  𝒂𝒏𝒅 𝑩 =  [
𝟐 𝟑

−𝟏 𝟐
𝟒 −𝟓

]. Find AB and BA and show 

that 𝑨𝑩 ≠ 𝑩𝑨. 

Solution : Here, A is a 2 × 3 matrix and B is a 3 × 2 matrix. Si, AB exist and it is of order 

2 × 2 . 

∴ 𝐴𝐵 = [
1 −2 3
3 2 −1

] [
2 3

−1 2
4 −5

]    

𝐴𝐵 = [
2 + 2 + 12 3 − 4 − 15
6 − 2 − 4 9 + 4 + 5

]  

𝐴𝐵 = [
16 −16
0 18

]  

Again, B is a 3 × 2 matrix and A is a 2 × 3 matrix. So, BA exist and it is of order 3 × 3. 

∴ 𝐵𝐴 = [
2 3

−1 2
4 −5

] [
1 −2 3
3 2 −1

] = [
2 + 9 −4 + 6 6 − 3

−1 + 6 2 + 4 −3 − 2
4 − 15 −8 − 10 12 + 5

] = [
11 2 3
5 6 −5

−11 −18 17
] 

𝐶𝑙𝑒𝑎𝑟𝑙𝑦 , 𝐴𝐵 ≠ 𝐵𝐴. 

1.9 Positive Integral Powers of A Square Matrix: 

For any square matrix, we define (i) 𝐴1 = 𝐴  𝑎𝑛𝑑 , (𝑖𝑖)𝐴𝑛+1 = 𝐴𝑛. 𝐴, 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ ℕ. 

It is evident from this definition that 𝐴2 = 𝐴. 𝐴, 𝐴3 = 𝐴2𝐴 = (𝐴𝐴)𝐴 etc. 
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It can be easily shown that  

(i) 𝐴𝑚𝐴𝑛 = 𝐴𝑚+𝑛  𝑎𝑛𝑑 , (𝑖𝑖)(𝐴𝑚)𝑛 = 𝐴𝑚𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 , 𝑛 ∈ 𝑁. 

Matrix Polynomial : Let 𝑓(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + 𝑎2𝑥
𝑛−2 + ⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛 be a polynomial and 

let A be a square matrix of order n. Then,  

𝑓(𝐴) = 𝑎0𝐴
𝑛 + 𝑎1𝐴

𝑛−1 + 𝑎2𝐴
𝑛−2 + ⋯+ 𝑎𝑛−1𝐴 + 𝑎𝑛𝐼𝑛  

Is called a matrix polynomial. 

For Example, if 𝑓(𝑥) = 𝑥2 − 3𝑥 + 2 is a polynomial and A is a square matrix, then 𝑓(𝐴) = 𝐴2 − 3𝐴 +

2𝐼  is a matrix polynomial. 

1.9.1 Type I On Multiplication Of Matrices: 

 

Example 6: Find the value of x such that [𝟏 𝒙 𝟏] [
𝟏 𝟑 𝟐
𝟐 𝟓 𝟏
𝟏𝟓 𝟑 𝟐

] [
𝟏
𝟐
𝒙
] = 𝟎. 

Solution: We have, [1 𝑥 1] [
1 3 2
2 5 1
15 3 2

] [
1
2
𝑥
] = 0 

⇒ [1 𝑥 1] [
7 + 2𝑥
12 + 𝑥
21 + 2𝑥

] = 0  

⇒ 7 + 2𝑥 + 12𝑥 + 𝑥2 + 21 + 2𝑥 = 0  

⇒ 𝑥2 + 16𝑥 + 28 = 0  

⇒ (𝑥 + 14)(𝑥 + 2) = 0  

⇒ 𝑥 = −2 𝑜𝑟 − 14 . 

1.9.2 Type II On Matrix Polynomials And Matrix Polynomial Equations: 

Example 7: Let, 𝒇(𝒙) = 𝒙𝟐 − 𝟓𝒙 + 𝟔 . 𝑭𝒊𝒏𝒅 𝒇(𝑨), 𝒊𝒇 𝑨 = [
𝟐 𝟎 𝟏
𝟐 𝟏 𝟑
𝟏 −𝟏 𝟎

]. 

Solution : First we note that by f (A) we mean the matrix polynomial 𝐴2 − 5𝐴 + 6𝐼3.  That is, to obtain 

f (A) , x is replaced by A and the constant term is multiplied by the identity matrix of order same as that 

of A.  

Now, 𝐴2 = 𝐴𝐴 = [
2 0 1
2 1 3
1 −1 0

] [
2 0 1
2 1 3
1 −1 0

] = [
4 + 0 + 1 0 + 0 − 1 2 + 0 + 0
4 + 2 + 3 0 + 1 − 3 2 + 3 + 0
2 − 2 + 0 0 − 1 + 0 1 − 3 + 0

] = [
5 −1 2
9 −2 5
0 −1 −2

] 

−5𝐴 = [
−10 0 −5
−10 −5 −15
−5 5 0

]  𝑎𝑛𝑑 6𝐼3 = [
6 0 0
0 6 0
0 0 6

]  

∴ 𝑓(𝐴) = 𝐴2 − 5𝐴 + 6𝐼3 = [
5 −1 2
9 −2 5
0 −1 −2

] + [
−10 0 −5
−10 −5 −15
−5 5 0

] + [
6 0 0
0 6 0
0 0 6

] = [
1 −1 −3

−1 −1 −10
−5 4 4

] . 
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1.9.3 Type III On Principle of Mathematical Induction  

The Principle of Mathematical Induction:  

Let P (n) be a statement involving positive integer n such that  

(i) P(1) is true i.e.,the statement is true for n = 1, and  

(ii) 𝑃 (𝑚 + 1)  is true whenever P(m) is true i.e, the truth of P(m) implies the truth of P(m+1). 

Then, 𝑃(𝑛) is true for all positive integer n. 

Example 8: If 𝑨𝜶 = [
𝐜𝐨𝐬 𝜶 𝐬𝐢𝐧𝜶

−𝐬𝐢𝐧 𝜶 𝐜𝐨𝐬  𝜶 
] ,  then prove that (i) 𝑨𝜶𝑨𝜷 = 𝑨𝜶+𝜷 , (ii) (𝑨𝜶)𝒏 =

[
𝐜𝐨𝐬 𝒏𝜶 𝐬𝐢𝐧𝒏𝜶

−𝐬𝐢𝐧𝒏𝜶 𝐜𝐨𝐬𝒏𝜶
] for every positive integer n.  

Solution :  

(i)  We find that 𝐴𝛼𝐴𝛽 = [
cos 𝛼 sin 𝛼

− sin 𝛼 cos  𝛼 
] [

cos 𝛽 sin 𝛽
− sin 𝛽 cos𝛽

] 

= [
cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 sin 𝛼 cos𝛽 + cos 𝛼 𝑠𝑖𝑛𝛽

− sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽
]  

= [
cos(𝛼 + 𝛽) sin(𝛼 + 𝛽)

− sin(𝛼 + 𝛽) cos(𝛼 + 𝛽)
]  

= 𝐴𝛼+𝛽 . 

(ii) We shall prove the result by mathematical induction on n. 

Step 1 When n = 1, by the definition of integral powers of a matrix, we obtain  

(𝐴𝛼)1 = 𝐴𝛼 = [
cos 𝛼 sin 𝛼

− sin 𝛼 cos 𝛼
] = [

cos(1. 𝛼) sin (1. 𝛼)
− sin(1. 𝛼) cos(1. 𝛼)

]  

So, the result is true for n = 1. 

Step 2 Let the result is true for n = m. Then, 

(𝐴𝛼)𝑚 = [
cos𝑚𝛼 sin𝑚𝛼

− sin𝑚𝛼 cos𝑚𝛼
]  

Now, we will show that the result is true for 𝑛 = 𝑚 + 1 

 𝑖. 𝑒. (𝐴𝛼)𝑚+1 = [
cos(𝑚 + 1)𝛼 sin(𝑚 + 1)𝛼

− sin(𝑚 + 1)𝛼 cos(𝑚 + 1)𝛼
] 

By the definition of integral powers of a square matrix, we have  

(𝐴𝛼)𝑚+1 = (𝐴𝛼)𝑚𝐴𝛼  
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(𝐴𝛼)𝑚+1 = [
cos𝑚𝛼 sin𝑚𝛼

−sin𝑚𝛼 cos𝑚𝛼
] [

cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

]  

(𝐴𝛼)𝑚+1 = [
cos𝑚𝛼 cos 𝛼 − sin𝑚𝛼 sin 𝛼 cos𝑚𝛼 sin 𝛼 + sin𝑚𝛼 cos 𝛼

− sin𝑚𝛼 cos 𝛼 − cos𝑚𝛼 sin 𝛼 − sin𝑚𝛼 sin 𝛼 + cos𝑚𝛼 cos 𝛼
]  

(𝐴𝛼)𝑚+1 = [
cos(𝑚𝛼 + 𝛼) sin(𝑚𝛼 + 𝛼)

− sin(𝑚𝛼 + 𝛼) cos(𝑚𝛼 + 𝛼)
] = [

cos(𝑚 + 1)𝛼 sin(𝑚 + 1)𝛼
− sin(𝑚 + 1)𝛼 cos(𝑚 + 1)𝛼

]  

This shows that the result is true for n = m + 1, whenever it is true for n = m.  

Hence, by the principle of mathematical induction, the result is valid for any positive integer n. 

 

1.10 Transpose of a Matrix 

Let 𝐴 = [𝑎𝑖𝑗] be an 𝑚 × 𝑛 matrix. Then, the transpose of A, denoted by 𝐴𝑇𝑜𝑟 𝐴′, 𝑖𝑠 𝑎𝑛 𝑛 ×

𝑚 𝑚𝑎𝑡𝑟𝑖𝑥 such that (𝐴𝑇)𝑖𝑗 =  𝑎𝑖𝑗     𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 = 1, 2 , … , 𝑛; 𝑗 = 1 ,2 , … ,𝑚.  

Thus, 𝐴𝑇 is obtained from A by changing its rows into columns and columns into rows. 

For example, if 𝐴 = [
1
2
3
] , 𝑡ℎ𝑒𝑛 𝐴𝑇 = [1 2 3] . 

The first row of 𝐴𝑇 is the first column of A. The second row of 𝐴𝑇 is the second column of A and so on.  

1.10.1 Properties of Transpose  

Let A and B be two matrices, then 

I. (𝐴′)′ = 𝐴 

II. (𝐴 + 𝐵)′ = 𝐴′ + 𝐵′ ; A and B being the same order. 

III. (𝑘𝐴)′ = 𝑘𝐴′ , k be any scalar. 

IV. (𝐴𝐵)′ = 𝐵′𝐴′;  A and B being conformable for the product AB. 

1.11 Symmetric and Skew - symmetric Matrix: 

A square matrix A is said to be symmetric if its transpose coincides with itself, i.e, 𝐴𝑇 = 𝐴. 

A square matrix A is said to be skew - symmetric if 𝐴𝑇 = −𝐴. 

Theorem: Every square matrix can be uniquely expressed as the sum of a symmetric matrix and a 

skew- symmetric matrix. 

Solution: Let A be any square matrix. Then we have 

A =
1

2
(A + AT) +

1

2
(A − AT)  

Denoting 
1

2
(A + AT) by P and 

1

2
(A − AT) by Q , we have A = P + Q 

Now, 𝑃′ = {
1

2
(A + AT)}𝑇 =

1

2
{𝐴𝑇 + (𝐴𝑇)𝑇} =

1

2
{𝐴𝑇 + 𝐴} =

1

2
(A + AT) = P 

Which follows that P is a symmetric matrix. 
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Also, 𝑄′ = {
1

2
(A − AT)}𝑇 =

1

2
{𝐴𝑇 − (𝐴𝑇)𝑇} =

1

2
{𝐴𝑇 − 𝐴} = −

1

2
(A − AT) = −Q 

Which follows that Q is a skew-symmetric matrix. 

Thus the square matrix A is expressible as the sum of a symmetric matrix P and  a  skew-symmetric 

matrix Q. 

Example 9: A matrix which is both symmetric as well as skew-symmetric is a null matrix. 

Solution: 

Let 𝐴 = [𝑎𝑖𝑗] a matrix which is both symmetric and skew- symmetric. 

Now, 𝐴 = [𝑎𝑖𝑗] is a symmetric matrix ⇒ 𝑎𝑖𝑗 = 𝑎𝑗𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗           ………..(i) 

Also, 𝐴 = [𝑎𝑖𝑗] is a skew- symmetric matrix. 

∴ 𝑎𝑖𝑗 = −𝑎𝑗𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗 ⇒  𝑎𝑗𝑖 = −𝑎𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗  ………………(ii) 

From (i) and (ii), we obtain  

𝑎𝑖𝑗 = −𝑎𝑖𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗 ⇒ 2𝑎𝑖𝑗 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗 ⇒ 𝑎𝑖𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑗 ⇒ 𝐴 = [𝑎𝑖𝑗] 𝑖𝑠 𝑎 𝑛𝑢𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥. 

 

  

Example 10: Express [
−𝟑 𝟒 𝟏
𝟐 𝟑 𝟎
𝟏 𝟒 𝟓

] as a sum of a symmetric matrix and a skew- symmetric matrix. 

Solution : We know that A =
1

2
(A + AT) +

1

2
(A − AT) where 

1

2
(A + AT) is symmetric and 

1

2
(A − AT) is 

skew-symmetric.  

Here,      A = [
−3 4 1
2 3 0
1 4 5

] 

AT = [
−3 2 1
4 3 4
1 0 5

]  

∴
1

2
(A + AT) =

1

2
[
−3 − 3 4 + 2 1 + 1
2 + 4 3 + 3 0 + 4
1 + 1 4 + 0 5 + 5

] =
1

2
[
−6 6 2
6 6 4
2 4 10

] = [
−3 3 1
3 3 2
1 2 5

]  

And 
1

2
(A − AT) =

1

2
[
−3 + 3 4 − 2 1 − 1
2 − 4 3 − 3 0 − 4
1 − 1 4 − 0 5 − 5

] =
1

2
[

0 2 0
−2 0 −4
0 4 0

] = [
0 1 0

−1 0 −2
0 2 0

] 

A = [
−3 3 1
3 3 2
1 2 5

] + [
0 1 0

−1 0 −2
0 2 0

]  

 

1.12 Some typical type of Matrices  

1. Idempotent Matrix 
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A square matrix A is said to be idempotent matrix if 𝐴2 = 𝐴.  

Example : matrix A = [
2 −3 −5

−1 4 5
1 −3 −4

] is idempotent, for 

A2 = [
2 −3 −5

−1 4 5
1 −3 −4

] × [
2 −3 −5

−1 4 5
1 −3 −4

] = [
2 −3 −5

−1 4 5
1 −3 −4

] = A . 

2. Nilpotent Matrix  

 A square matrix A is said to be nilpotent matrix of index k, if k be the least positive integer for which 

𝐴𝑘 = 0 , null matrix.  

For Example :  𝐴 = [
1 −1 1

−3 3 −3
−4 4 −4

] 

Then 𝐴2 = [
1 −1 1

−3 3 −3
−4 4 −4

] × [
1 −1 1

−3 3 −3
−4 4 −4

] = [
1 + 3 − 4 −1 − 3 + 4 1 + 3 − 4

−3 − 9 + 12 3 + 9 − 12 −3 − 9 + 12
−4 − 12 + 16 4 + 12 − 16 −4 − 12 + 16

] 

= [
0 0 0
0 0 0
0 0 0

] = O  

 

There fore, A is a nilpotent matrix of index 2. 

3. Involutary Matrix : 

A square matrix A is said to be involutary matrix if 𝐴2 = 𝐼 

For Example : If A = [
4 3 3

−1 0 −1
−4 −4 −3

] 

𝐴2 = [
4 3 3

−1 0 −1
−4 −4 −3

] × [
4 3 3

−1 0 −1
−4 −4 −3

]  

= [
16 − 3 − 12 12 + 0 − 12 12 − 3 − 9
−4 + 0 + 4 −3 + 0 + 4 −3 + 0 + 3

−16 + 4 + 12 −12 + 0 + 12 −12 + 4 + 9
]  

= [
1 0 0
0 1 0
0 0 1

] = 𝐼  

Therefore, A is an involutary matrix. 

4. Orthogonal Matrix: 

A square matrix A is said to be orthogonal if AA′ = A′A = I. 

Properties of Orthogonal Matrices  

1. If A is orthogonal, then 𝐴−1𝑎𝑛𝑑 𝐴′ are also orthogonal. 

2. If A and B are orthogonal, then AB is also orthogonal. 
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Example 11: Show that the matrix 𝐴 = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
] is orthogonal. 

Solution : To prove A is orthogonal, we have to show that 𝐴′𝐴 = 𝐼. 

𝐴′ = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]  

∴ 𝐴𝐴′ = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
] × [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]  

= [ 𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 −cos 𝜃 sin 𝜃 + sin 𝜃 cos 𝜃
− sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃

] = [
1 0
0 1

] = 𝐼  

Example 12: If A = [
1 2 2
2 1 2
2 2 1

] , prove that 𝐴2 − 4𝐴 − 5𝐼 = 0 . 

Solution : 𝐴2 = 𝐴 × 𝐴 = [
1 2 2
2 1 2
2 2 1

] × [
1 2 2
2 1 2
2 2 1

] 

= [
1 × 1 + 2 × 2 + 2 × 2 1 × 2 + 2 × 1 + 2 × 2 1 × 2 + 2 × 2 + 2 × 1
2 × 1 + 1 × 2 + 2 × 2 2 × 2 + 1 × 1 + 2 × 2 2 × 2 + 1 × 2 + 2 × 1
2 × 1 + 2 × 2 + 1 × 2 2 × 2 + 2 × 1 + 1 × 2 2 × 2 + 2 × 2 + 1 × 1

]  

= [
9 8 8
8 9 8
8 8 9

]  

𝐴2 − 4𝐴 − 5𝐼 = [
9 8 8
8 9 8
8 8 9

] − 4 [
1 2 2
2 1 2
2 2 1

] − 5 [
1 0 0
0 1 0
0 0 1

]  

= [
9 8 8
8 9 8
8 8 9

] − [
4 8 8
8 4 8
8 8 4

] − [
5 0 0
0 5 0
0 0 5

]  

= [
9 − 4 − 5 8 − 8 − 0 8 − 8 − 0
8 − 8 − 0 9 − 4 − 5 8 − 8
8 − 8 − 0 8 − 8 − 0 9 − 4 − 5

]  

= [
0 0 0
0 0 0
0 0 0

]  

= O . 

Example 13: If A is a symmetric matrix and B is skew- symmetric matrix such that 𝑨 + 𝑩 =

[
𝟐 𝟑
𝟓 −𝟏

], then find AB. 

Solution: It is given that A is a symmetric matrix and B is a skew-symmetric matrix. 

Therefore, 𝐴𝑇 = 𝐴  𝑎𝑛𝑑 𝐵𝑇 = −𝐵. 

Now, 𝐴 + 𝐵 = [
2 3
5 −1

]  ………….(i) 

⇒ (𝐴 + 𝐵)𝑇 = [
2 3
5 −1

]
𝑇

⇒ 𝐴𝑇 + 𝐵𝑇 = [
2 5
3 −1

] ⇒ 𝐴 − 𝐵 = [
2 5
3 −1

] ………… . . (𝑖𝑖)  
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Adding (i) and (ii) , we obtain  

2𝐴 = [
2 3
5 −1

] + [
2 5
3 −1

] = [
2 + 2 3 + 5
5 + 3 −1 − 1

] = [
4 8
8 −2

]  

⇒ 𝐴 =
1

2
[
4 8
8 −2

] = [
2 4
4 −1

]…………(𝑖𝑖𝑖)  

From (i) and (iii), we obtain  

[
2 4
4 −1

] + 𝐵 = [
2 3
5 −1

] ⇒ 𝐵 = [
2 3
5 −1

] − [
2 4
4 −1

] = [
0 −1
1 0

]     

∴ 𝐴𝐵 = [
2 4
4 −1

] [
0 −1
1 0

] = [
0 + 4 −2 + 0
0 − 1 −4 + 0

] = [
4 −2

−1 −4
]  

 Example 14: Find the values of x , y, z if the matrix 𝑨 = [
𝟎 𝟐𝒚 𝒛
𝒙 𝒚 −𝒛
𝒙 −𝒚 𝒛

] satisfy the equation 𝑨𝑻𝑨 =

𝑰𝟑. 

Solution: We have,  

𝐴 = [
0 2𝑦 𝑧
𝑥 𝑦 −𝑧
𝑥 −𝑦 𝑧

]   ⇒ 𝐴𝑇 = [
0 𝑥 𝑥
2𝑦 𝑦 −𝑦
𝑧 −𝑧 𝑧

]  

It is given that  

𝐴𝑇𝐴 = 𝐼3  

⇒ [
0 𝑥 𝑥
2𝑦 𝑦 −𝑦
𝑧 −𝑧 𝑧

] [
0 2𝑦 𝑧
𝑥 𝑦 −𝑧
𝑥 −𝑦 𝑧

] = [
1 0 0

0 1 0

0 0 1

]  

⇒ [
2𝑥2 0 0
0 6𝑦2 0

0 0 3𝑧2

] = [
1 0 0

0 1 0

0 0 1

]  

⇒ 2𝑥2 = 1, 6𝑦2 = 1 , 3𝑧2 = 1    

⇒ 𝑥 = ±
1

√2
 ,   𝑦 = ±

1

√6
 ,   𝑧 = ±

1

√3
  

Example 15: If 𝑨 = [
𝟏 𝟐 𝟐
𝟐 𝟏 −𝟐
𝒂 𝟐 𝒃

] is a matrix satisfying 𝑨𝑨𝑻 = 𝟗𝑰𝟑, then find the values of a and b. 

Solution: We have,  

𝐴 = [
1 2 2
2 1 −2
𝑎 2 𝑏

]  ⇒ 𝐴𝑇 = [
1 2 𝑎
2 1 2
2 −2 𝑏

]  
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∴ 𝐴𝐴𝑇 = 9𝐼3  

⇒ [
1 2 2
2 1 −2
𝑎 2 𝑏

] [
1 2 𝑎
2 1 2
2 −2 𝑏

] = 9 [
1 0 0

0 1 0

0 0 1

]  

⇒ [
9 0 𝑎 + 2𝑏 + 4
0 9 2𝑎 + 2 − 2𝑏

𝑎 + 2𝑏 + 4 2𝑎 + 2 − 2𝑏 𝑎2 + 4 + 𝑏2
] = [

9 0 0
0 9 0
0 0 9

]  

⇒ 𝑎 + 2𝑏 + 4 = 0 , 2𝑎 + 2 − 2𝑏 = 0 𝑎𝑛𝑑 𝑎2 + 4 + 𝑏2 = 9  

⇒ 𝑎 + 2𝑏 + 4 = 0 , 𝑎 − 𝑏 + 1 = 0 𝑎𝑛𝑑  𝑎2 + 𝑏2 = 5  

Solving 𝑎 + 2𝑏 + 4 = 0  𝑎𝑛𝑑 𝑎 − 𝑏 + 1 = 0,   𝑤𝑒 𝑔𝑒𝑡:  𝑎 = −2  𝑎𝑛𝑑 𝑏 = −1. 

 

 

Exercise 1 

 MCQ : 

 

1. If 𝐴 = [
1 1 1
1 1 1
1 1 1

] . 𝐴2 = ? 

a. A ,  b. 3A ,  c. unit matrix,  d. 2A 

2. If the matrix [
0 1 −2

−1 0 3
𝜆 −3 0

] is singular, the value of 𝜆 is – 

a) 0 

b) 4 

c) 2 

d) -1 

3. If the matrix [
8 −6 2

−6 7 −4
2 −4 𝑥

] is singular then the value of x is 

a. 3, b. 5,  c. 2,  d. 4 

4. If 𝐵2 = 𝐼 𝑎𝑛𝑑 𝐴 = 𝐼 − 𝐵 then  

a. A2 = I , b. BA = 0 ,  c. A2 = A,   d. AB = 0 

  

5. If A = [
1 1
1 1

] then A100 = ? 

a. 299 [
1 1
1 1

]  b. 2101 [
1 1
1 1

]  c. 2100 [
1 1
1 1

]     d. none 

6. Which is true about matrix multiplication  
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a. it is associative.  b. it is commutative. 

c. it is both associative and commutative   d. none. 

7. The matrix [
0 5 −7

−5 0 11
7 −11 0

] is known as  

a. symmetric matrix,  c. diagonal matrix  

b. skew-symmetric matrix, d. scaler matrix. 

8. If [
3 −2
5 6

] + 2𝐴 = [
5 6

−7 10
] , 𝑡ℎ𝑒𝑛 𝐴 =? 

a)  [
1 3

−5 4
] , 

b) [
−15 0
−3 4

] 

c) [
1 4

−6 2
] , 

d) 𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒. 

9. If [
3 4
5 𝑥

] + [
1 𝑦
0 1

] = [
7 0
10 5

] , 𝑡ℎ𝑒𝑛 

a) 𝑥 = −2, 𝑦 = 8; 

b) 𝑥 = 2, 𝑦 = −8; 

c) 𝑥 = 3, 𝑦 = −6 ; 

d) 𝑥 = −3 , 𝑦 = 6; 

10. If [
𝑥 𝑦
3𝑦 𝑥] [

1
2
] = [

3
5
] , then  

a) 𝑥 = 1, 𝑦 = 2 ; 

b) 𝑥 = 2 , 𝑦 = 1 ;  

c) 𝑥 = 1 , 𝑦 = 1; 

d) 𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒. 

11. If 𝐴 = [
3 − 2𝑥 𝑥 + 1

2 4
] is a singular matrix, then x = ? 

a) 0 ; 

b) 1 ; 

c) -1 ; 

d) -2 ; 

12. Let A be an 𝑚 × 𝑛 matrix and B be 𝑝 × 𝑞 matrix, then AB is defined if  

a) 𝑛 = 𝑝 

b) 𝑚 = 𝑝 

c) 𝑚 = 𝑞 

d) 𝑝 = 𝑞 

13. A square matrix A is said to be singular if  

a) detA = -1 

b) detA = 0 

c) detA = 1 

d) detA = -2 
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14. The value k for which the matrix [
2 0 1
1 −𝑘 2
3 1 0

] is singular is – 

a) 1 

b) 2 

c) 3 

d) 4 

15. The matrix 𝐴 = [ 𝑎𝑏 −𝑏2

−𝑎2 𝑎𝑏
] is  

a) Idempotent  

b) Orthogonal 

c) Nilpotent 

d) None of these 

 

Answers :   1.b 2.c 3.a 4.b 5.a 6.a, 7.d 8.b 9. c 

10. c, 11.d,  12.c,  13.b ,  14.c ,  15.a. 

 Short Answer Type Question: 

 

 

1. If [
𝑦 1
3 𝑥

] + [
𝑥 1

−1 −𝑦
] = [

1 2
2 1

] then find the values of x and y. 

2. Find the value of t for which the matrix [
2 0 1
5 𝑡 3
0 3 1

] is singular. 

3. If 𝐴 = (2 −3 4) , 𝐵 = (
3
2
1
), 𝐶 = (0 2 3) and 𝐷 = (

2
2
4
) then find AB+CD 

4. If 2𝑋 + [
1 2
3 4

] = [
3 8
7 2

].  Find X 

5. If 𝐴 = [
3 1

−1 2
] ,  Show that 𝐴2 − 5𝐴 + 7𝐼 = 𝑂. Use this to find  𝐴4. 

6. If 𝐴 = [
3 −2
4 −2

] , 𝑓𝑖𝑛𝑑 𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴2 = 𝑘𝐴 − 2𝐼2. 

7. If 𝐴 = [
1 0

−1 7
], find k such that 𝐴2 − 8𝐴 + 𝑘𝐼 = 𝑂. 

8. If 𝐴 = [
1 2
2 1

] and 𝑓(𝑥) = 𝑥2 − 2𝑥 − 3, 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑓(𝐴) = 𝑂. 

9. If 𝐴 = [
2 3
1 2

] 𝑎𝑛𝑑 𝐼 =  [
1 0
0 1

] , 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝜆 , 𝜇 𝑠𝑜 𝑡ℎ𝑎𝑡 𝐴2 = 𝜆𝐴 + 𝜇𝐼. 

10. Find the value of x for which the matrix product [
2 0 7
0 1 0
1 −2 1

] [
−𝑥 14𝑥 7𝑥
0 1 0
𝑥 −4𝑥 −2𝑥

] equal 

to an identity matrix. 

11. If 𝐴 = [
1 2 3
3 −2 1
4 2 1

] , 𝑡ℎ𝑒𝑛 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝐴3 − 23𝐴 − 40𝐼 = 𝑂 

12. If (𝑥) = 𝑥2 − 2𝑥 , find f(A) , where 𝐴 = [
0 1 2
4 5 6
0 2 3

] . 
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13. Let 𝐴 = [
2 −3

−7 5
]  𝑎𝑛𝑑 𝐵 = [

1 0
2 −4

], Verify that (i) (2𝐴)𝑇 = 2𝐴𝑇 , (ii) (𝐴 + 𝐵)𝑇 =

𝐴𝑇 + 𝐵𝑇, (iii) (𝐴 − 𝐵)𝑇 = 𝐴𝑇 − 𝐵𝑇 , (iv) (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 

14. If 𝐴 = [
3
5
2
]  𝑎𝑛𝑑 𝐵 =  [1 0 4], 𝑣𝑒𝑟𝑖𝑓𝑦 𝑡ℎ𝑎𝑡 (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 . 

15. For two matrices A and B, 𝐴 = [
2 1 3
4 1 0

] , 𝐵 = [
1 −1
0 2
5 0

]  𝑉𝑒𝑟𝑖𝑓𝑦 𝑡ℎ𝑎𝑡 (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 . 

16. If 𝐴𝑇 = [
3 4

−1 2
0 1

]  𝑎𝑛𝑑 𝐵 =  [
−1 2 1
1 2 3

] , 𝑓𝑖𝑛𝑑 𝐴𝑇 − 𝐵𝑇 . 

17. If [
4 𝑥 + 2

2𝑥 − 3 𝑥 + 1
] is a symmetric matrix, then find the value of x . 

18. If the matrix 𝐴 = [
5 2 𝑥
𝑦 𝑧 −3
4 𝑡 −7

] is a symmetric matrix, find x , y ,z , t . 

19. Express the matrix [
3 −2 −4
3 −2 −5

−1 1 2
] as the sum of a symmetric and skew- symmetric 

matrix and verify your result. 

20. Let , 𝐴 = [
3 2 7
1 4 3

−2 5 8
], Find matrices X and Y such that 𝑋 + 𝑌 = 𝐴 , where X is a 

symmetric and Y is a skew- symmetric matrix. 

 

Solution : 

1. 𝑥 = 1, 𝑦 = 0 ;    9. 𝜆 = 4 , 𝜇 = −1  

2. 𝑡 =
3

2
 ;     10. 1/5 ; 

3. 20,      12. [
4 7 2
12 19 8
8 12 3

] 

4. 𝑋 = [
1 3
2 −1

]    16. [
4 3

−3 0
−1 −2

]  

5. [
39 55

−55 −16
]    17. 5 

6. K = 1     18. 𝑥 =  4, 𝑦 =  2 , 𝑧 ∈ 𝐶, 𝑡 = −3 

19. Symmetric matrix = 

[
 
 
 
 3

1

2
−

5

2
1

2
−2 −2

−
5

2
−2 2 ]

 
 
 
 

 ; skew-symmetric matrix = 

[
 
 
 
 0 −

5

2
−

3

2
5

2
0 −3

3

2
3 0 ]

 
 
 
 

 . 

7. K = 7   20. 𝑋 = [

3 3/2 5/2
3/2 4 4
5/2 4 8

] , 𝑌 =  [

0 1/2 9/2
−1/2 0 −1
−9/2 1 0

] 

 

2 Long Answer Type Question: 
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1. Find X and Y if  𝑋 + 𝑌 = [
1 0 2
2 2 2
1 1 2

] , 𝑋 − 𝑌 = [
1 4 4
4 2 0

−1 −1 2
]. 

Ans. 𝑋 = [
1 2 3
3 2 1
0 0 2

] , 𝑌 =  [
0 −2 −1

−1 0 1
1 1 0

] 

2. Compute AB and BA and show that 𝐴𝐵 ≠ 𝐵𝐴. 

𝐴 = [
2 3 4
1 2 3

−1 1 2
] , 𝑎𝑛𝑑 𝐵 = [

1 3 0
−1 2 1
0 0 1

]  

3. If 𝐴 = [
2 −3 1
2 −1 1
2 −1 1

]  𝑎𝑛𝑑 𝐵 =  [
0 −1 1
0 1 −1
0 3 −3

] , 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝐴𝐵 = 0. 

4. Find x if [1 1 𝑥] [
1 0 2
0 2 1
2 1 0

] [
1
1
1
] = 0.   (Ans. 𝑥 = −2) 

5. Verify that (𝐴𝐵)′ = 𝐵′𝐴′ where, 

𝐴 = [
1 4
0 5
6 7

]   𝑎𝑛𝑑 𝐵 =  [
2 3 −1
1 0 −7

] . 
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a b 

CHAPTER 2 

 
Determinants 

 

 
 
 

 
2.1    Introduction 

In Engineering Mathematics, solution of simultaneous equations is very important. In this 

chapter we shall study the system of linear equations with emphasis on their solution by means of 

determinants. 

2.2    Determinant 

         The notation of determinants arises from the process of elimination of the unknowns of      

simultaneous linear equations. 

Consider the two linear equations in x, 

a1 x + b1 = 0 ... (1) 

a2 x + b2 = 0 ... (2) 

 

From (1) x   
b1 

a1 

Substituting the value of x in (2); we get the eliminant 

 

𝑎2 (−
𝑏1

𝑎1

) + 𝑏2 = 0 

or                          𝑎1𝑏2 − 𝑎2 𝑏1 = 0. ... (3) 

 
From (1) and (2) by suppressing x, the eliminant is written as 

a1 b1   0 
a2  b2 

 

                                                           ... (4) 

          when the two rows of 𝑎1, 𝑏1  and 𝑎2, 𝑏2 are  enclosed by two vertical bars then it is called a 
   determinant of second order. 

 
    

  

 
 
 

     Column 1 

|
𝑎1

𝑎2
|  𝑎𝑛𝑑  |

𝑏1

𝑏2
| 

 

 

 

 
 
 
 
Column 2 

Row 1  

Row 2  

a1 ......... b1 

a
2 ......... b2 

Each quantity a1, b1, a2, b2 is called an element or a constituent of the determinant. From (3)   

and   (4), we    know that both expressions are eliminant, so we equate them. 

a1 b1 

a2 b2 

 a1 b2  a2 b1 

a1 b1 

or 
2 2 

 

= a1b2 – a2b1 
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a1b2 

 

– a2b1 

 

is called the expansion of the determinant of 
a1 b1 . 
a2  b2 

 

Example 1. Expand the determinant 

 
+ – 

3  2 
. 

6  7 

3 
Solution. 

2 
= (3) × (7) – (2) × (6) = 21 – 12 = 9. Ans. 

6 7 

Exercise 2.1 

Expand the following determinants : 

4  6 
1. 

2  5 

 

Ans. 8 2. 
 3  7 

2  4 

 

Ans. – 26 

8  5 5   2 
3. 

3  1 
Ans. – 7 4. 

4 3 Ans. 23 

2.3     Determinant as eliminant 

Consider the following three equations having three unknowns, x, y and z. 

a1 x + b1 y + c1 z = 0 ...(1) 

a2 x + b2 y + c2 z = 0 ...(2) 

a3 x + b3 y + c3 z = 0 ...(3) 

From (2) and (3) by cross-multiplication, we get 
𝑥

𝑏2𝑐3 − 𝑏3𝑐2

=
𝑦

𝑎3𝑐2 − 𝑎2𝑐3

=
𝑧

𝑎2𝑏3 − 𝑎3𝑏2

= 𝑘 (𝑠𝑎𝑦) 

x = (b2 c3 – b3 c2) k 

y = (a3 c2 – a2 c3) k 

and z = (a2 b3 – a3 b2) k 

Substituting the values of x, y and z in (1), we get the eliminant 

a1 (b2c3 – b3c2) k + b1 (a3c2 – a2c3) k + c1 (a2b3 – a3b2) k = 0 

or a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2) = 0 ...(4) 

From (1), (2) and (3) by suppressing x, y, z the remaining can be written in the determinant as 
 

a1 b1 

a2  b2 

a3 b3 

 

c1 

c2   0 

c3 

 

 

...(5) 

This is determinant of third order. 

As (4) and (5) both are the eliminant of the same equations. 

a1 b1 

 
a2  b2 

a3 b3 

c1 

c2  a1 (b2c3  b3c2)  b1 (a2c3  a3c2)  c1 (a2b3  a3b2)  0. 

c3 

 
 

2.4 Minor 

The minor of an element is defined as a determinant obtained by deleting the row and column 

containing the element. 

Thus the minors a1, b1 and c1 are respectively: |
𝑏2 𝑐2

𝑏3 𝑐3
|, |

𝑎2 𝑐2

𝑎3 𝑐3
| and |

𝑎2 𝑏2

𝑎3 𝑏3
|. 
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Thus 

 

 

 

a1 b1 c1 

a
2  

b
2  

c
2 = a1 (minor of a1 ) – b1 (minor of b1 ) + c1 (minor of c1 ). 

2.5 Cofactor 

a3  b3 c3 

  1 

Cofactor = (– 1)r+c Minor 

where r is the number of rows of the element and c is the number of columns of the element. 

The cofactor of any element of jth row and ith column is 

(– 1)i+j minor 

Thus the cofactor of a1 = (– 1)1+1 (b2c3 – b3c2) = + (b2c3 – b3c2) 

The cofactor of b1 = (– 1)1+2 (a2c3 – a3c2) = – (a2c3 – a3c2) 

The cofactor of c1 = (– 1)1+3 (a2b3 – a3b2) = + (a2b3 – a3b2) 

The determinant = a1 (cofactor of a1) + a2 (cofactor of a2) + a3 (cofactor of a3). 

 
                                 Example 2. Find : 

                               

                                  (i)  Minors (ii) Cofactors of the elements of the first row of the determinant 
 

 2 3 5 

4 1 0 

6 2 7 

Solution. 

(i)  The minor of the element (2) is 

   

 

2 3 5 
⁝ 
4  1  0 
⁝ 
6  2  7 

 

 
1  0 

2 7 

 

 (1) (7)  (0) (2)  7  0  7 

The minor of the element (3) is 

2 3 5 
⁝ 

4  1  0 
⁝ 

6  2  7 

 
4  0 

6  7 
 (4) (7)  (0) (6)  28  0  28 

The minor of the element (5) is 

2 3 5 
⁝ 

4  1  0 
⁝ 

6  2  7 

 
4  1 

6  2 
 (4) (2)  (1) (6)  8  6  2 

 The cofactor of (2) = (– 1)1+1 (7) = + 7 

The cofactor of (3) = (– 1)1+2 (28) = – 28 Ans. 

The cofactor of (5) = (– 1)1+3 (2) = + 2. 

6  2  3 

                             Example 3. Expand the determinant 

6  2  3 

2  3  5 

4  2  1 

                           Solution. 2  3  5 

4  2  1 

= 6 (cofactor of 6) + 2 (cofactor of 2) + 3 (cofactor of 3). 

= 6 (3 × 1 – 5 × 2) – 2 (2 × 1 – 4 × 5) + 3 (2 × 2 – 3 × 4)= -30.   Ans. 
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Example 4. Evaluate the determinant 

                               |
1 0 4
3 5 −1
0 1 2

| 

 

 

(i) With the help of second row,  (ii) with the help of third column. 

Solution. 

 
1  0 4 

(i) 3  5  1 = 3 × (cofactor of 3) + 5 × (cofactor of 5) + (– 1) (cofactor of – 1) 

0 1 2 

                                                                        

                                                Ans. 

 

1  0 4 

=-3(0-4)+5(2-0)+(1-0)=23. 

(ii) 3  5  1 = 4 × (cofactor of 4) + (– 1) (cofactor of (– 1)) + 2 × (cofactor of 2) 

0 1 2 
 

= 4 × (– 1)1+3 

 
3  5 1  0 

0  1  
+ (– 1) (– 1)2+3  

0  1 

 
1  0 

+ 2 × (– 1)3+3 
3  5 

= 23.   

 

0  1  2  3 

1  0  2  0 
Example 5. Expand the fourth order determinant 

 

 

0  2  0 

2  0  1  3 

1  2  1  0 

 

 

 

1  2  0 

Solution. Given determinant = (0) (–1)1 + 1 
0  1  3 

2  1  0 

 1 (–1)12  2  1  3 

1  1  0 

 

 

+ 2 (–1)1+ 3 

1  0  0 

2  0  3 

1  2  0 

 

 

 3 (–1)14  

1  0  2 

2  0  1 

1  2  1 

 

= 0 

1  2  0 

2  1  3   2 

1  1  0 

1  0  0 

2  0  3 

1  2  0 

1  0  2 

 3  2  0  1 

1  2  1 

    

= -3-12-18 

   = -33. 

                              Therefore, 
 0 1 2 3   

1 0 2 0  

 2 0 1 3   33 Ans. 

 1 2 1 0   
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Exercise 2.2 

Write the minors and co factors of each element of the following determinants and also evaluate 

the determinant in each case : 

 2 3 
1. 

4   9 

cos  sin 

M11 = – 9, M12 = 4, M21 = 3, M22 = – 2 

A11 =  – 9, A12 = – 4, A21 = – 3, A22 = – 2 | A | = 6      Ans. 

M11 = cos , M12 = sin  M12 = – sin , M22= cos 
2. 

sin 
 

cos  A
11 

= cos , A12 = – sin , A21 = sin , A22 = cos   | A | = 1    Ans. 
 

42  1  6 

3. 28  7  4 

14  3  2 

M11 = 2, M12 = 0, M13 = – 14, M21 = – 16, M22 = 0 

M23 = 112, M31 = – 38, M32 = 0, M33 = 266 

A11  = 2, A12 = 0, A13 = – 14, A21 = 16, A22 = 0 

A23  = – 112, A31 = – 38, A32 = 0, A33 = 266, | A | = 0          Ans. 

 

 

1 

4. 1 

1 

 

a bc 

b ca 

c ab 

M11 = (ab2 – ac2), M12 = (ab – ac), M13 = (c – b), M21 = a2b – bc2 

M22 = (ab – bc), M23 = (c – a), M31 = (ca2 – cb2), M32 = ca – bc, M33 = (b – a), 

A11 = (ab2 – ac2), A12 = (ac – ab), A13 = (c – b), A21 = bc2 – a2b 

A22 = (ab – bc), A23 = (a – c), A31 = (ca2 – cb2), A32 = (bc – ca), A33 = (b – a) 

| A | = (a – b) (b – c) (c – a). Ans. 

Expand the following determinants : 
 

2  3 4  5 0 7  a h g 

5. 5 1  6 6. 8  6  4 7. h b f 

 7 8 9  2 3 9  g f c 

Ans. | A | = 5 Ans. | A | = 42 Ans. | A | = abc + 2fgh – af 2 – bg2 – ch2 

Expand the following determinants by two methods : 

(i) along the-third row. 

(ii) along the-third column. 

 
 1   3 2  3  2 4  2 3   2  

8. 4 1 2 9. 1 2 1 10. 1 2 3  

 3 5 2  0 1 1   2 1   3  

Ans. | A | = 40 Ans. | A | = – 7 Ans. | A | = – 37 
 

 

11. 
log3 512  log4 3 

log3 8 log4 9 
Ans. | A | = 

15 

2 
 

12.  If a, b, c are all positive and are the pth, qth, rth 

terms of a G.P. respectively; then prove that 
 

3 2 5 7 

log a p  1 1  4 3 0 

log b q 1  0 13. 6 4 2  1 Ans. 96 

log c r  1 2 1 0 3 
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2.6 Rules of sarrus (For third order determinants only). 

After writing the determinant, repeat the first two columns as below 

 

 

 

 

 

 

 

 

 

 

= (a1b2c3 + b1c2a3 + c1a2b3) + (– c1b2a3 – a1c2b3 – b1a2c3) 

Example 6. Expand the determinant 

2  3  4 

  1  5  3 by Rule of Sarrus. 

3  0  5 

 

 

 

Solution. 

 
 

 

 

 

=(2) × (5) × (5) + (3) × (3) × (3) + (4) × (1) × (0) – (4) × (5) × (3) – (2) × (3) × (0) – (3) × (1) × (5) 

= 50 + 27 + 0 – 60 – 0 – 15 = 2 Ans. 

Exercise 2.3 

  Expand the following determinants by Rule of Sarrus. 
 

 3 2   4  1 4 2  6 3 7  9 25 6 

1. 5 1 1 2. 2 5 3 3. 32 13 37 4. 7 13 5 

  2 6 7  3 6 4  10 4 11  9 23 6 

Ans. – 155 Ans. 0 Ans. 10 Ans. 6 

 

5. If a + b + c = 0, solve the equation 

a  x  c b 

c b  x  a  0 

b a c  x 
 

Ans. x     , x = 0 (a2  b2  c2  ab  bc  ca) 



    

 

  B.7 
 

 

2.7 Properties of determinants 

Property (i)  The value of a determinant remains unaltered, if the rows are interchanged into columns 

(or the columns into rows). 

Consider the determinant. 

a1 b1 c1 

  a2  b2  c2 

a3  b3 c3 

= a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2) 

= a1b2c3 – a1b3c2 – a2b1c3 + a3b1c2 + a2b3c1 – a3b2c1 

= (a1b2c3 – a1b3c2) – (a2b1c3 – a2b3c1) + (a3b1c2 – a3b2c1) 

= a1 (b2c3 – b3c2) – a2 (b1c3 – b3c1) + a3 (b1c2 – b2c1) 

a1  a2 a3 

 b1 b2 b3 

c1  c2 c3 

 

Proved. 

Property (ii) If two rows (or two columns) of a determinant are interchanged, the sign of the value 

of the determinant changes. 

Interchanging the first two rows of , we get 
 

a2  b2 c2 

 '   a1 b1 c1 

a3 b3 c3 

= a2 (b1c3 – b3c1) – b2 (a1c3 – a3c1) + c2 (a1b3 – a3b1) 

= a2b1c3 – a2b3c1 – a1b2c3 + a3b2c1 + a1b3c2 – a3b1c2 

= – [(a1b2c3 – a1b3c2) – (a2b1c3 – a3b1c2) + (a2b3c1 – a3b2c1)] 

= – [(a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2)] 

a1 b1 

=  a2  b2 

a3  b3 

c1 

c2    Proved. 

c3 

Property (iii) If two rows (or columns) of a determinant are identical, the value of the determinant 

is zero. 

 

Let 

a1 b1 

   a1 b1 

a3  b3 

c1 

c1 , so that the first two rows are identical. 

c3 

By interchanging the first two rows, we get the same determinant . 

By property (ii), on interchanging the rows, the sign of the determinant changes. 

or  = –  or 2  = 0 or  = 0 Proved. 

Property (iv) If the elements of any row (or column) of a determinant be each multiplied by the 

same number, the determinant is multiplied by that number. 

 

 

ka1 

a2 

a3 

kb1 

b2 

b3 

kc1 

c2 

c3
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= ka1 (b2c3 – b3c2) – kb1 (a2c3 – a3c2) + kc1 (a2b3 – a3b2) 

= k [a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2)] 

a1 b1 

 k a2  b2 

a3  b3 

c1 

c2   k . 

c3 

 

Example 7. Prove that 
 

 

a2 a bc 

 

 

1 1 1 

 

 

 

 

 

 

Solution. 

b
2 

c
2 

 

a2 a bc 

b2 b  ca 

c2 c  ab 

b ca   a2  b2 c2 

c ab a3 b3 c3 

By multiplying R1, R2, R3 by a, b and c respectively we get 

         =
1

𝑎𝑏𝑐
|
𝑎3 𝑎2 𝑎𝑏𝑐
𝑏3 𝑏2 𝑎𝑏𝑐
𝑐3 𝑐2 𝑎𝑏𝑐

| =
𝑎𝑏𝑐

𝑎𝑏𝑐
|
𝑎3 𝑎2 1
𝑏3 𝑏2 1
𝑐3 𝑐2 1

|

   

a 
3 

a 
2 

 b 3 b 2 

c 
3 

c 
2 

 

a2 a3 

b2 b3 

c2 c3 

1 1 

   a2 b2 c2 

a3 b3 c3 

 

By changing rows into columns 

 

 

 

Proved 

Example 8. Without expanding and or evaluating, show that 

 

 

 

 

 

 

 

 

 

a2 a 

b2 b 

c2 c 

d 2 d 

1  bcd 

1  cda 

1 dab 

1  abc 

a3 a2 a  1 

b3 b2 b  1 


c3 c2 c  1 

d 3 d 2 d  1 

 
  

1   1 

1   1 

1   1 

1    
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                    Solution. 

                                   
 

 

 
abcd 

abcd 

a3 a2 

b3 b2 

c3 c2 

d 3 d 2 

a 1 

b 1 

c 1  C4 

d 1 

 

 

 
 1  

C 
abcd  4 

a3 a2 a  1 

b3 b2 b  1 


c3 c2 c  1 

d 3 d 2 d  1 

 

 

 

Proved 

 

 

 

 

 

Example 9. Prove that 

1  a a2 

1  b b2 

1  c c2 

1  a  bc 

 1  b  ca 

1  c  ab 

 

 

(Try yourself) 

 

Property (v) The value of the determinant remains unaltered if to the elements of one row (or 

column) be added any constant multiple of the corresponding elements of any other 

row (or column) respectively. 

 

Let 

a1 b1 c1 

  a2  b2  c2 

a3  b3 c3 

 

On multiplying the second column by l and the third column by m and adding to the 

first column we get 

 

 ' 

a1  lb1  mc1 b1 c1 

a2  lb2  mc2 b2 c2 

a3  lb3  mc3  b3  c3 

a1 b1 

 a2  b2 

a3  b3 

c1  b1 b1 

c2  l b2 b2 

c3 b3  b3 

c1  c1 b1 c1 

c2  m c2  b2  c2 

c3 c3  b3  c3 

=  + 0 + 0 (Since columns are identical) 

=  Proved 
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  265 240 219 

Example 10. Without expanding evaluate the determinant   240 225 198 

  219 198 181 

Solution. Applying C1  C1  C3  and C2  C2  C3, we get 

46 21  219 

   42  27  198 

38  17 181 

Applying C1  C1  2C2  and C3  C3  10 C2 , we get 

4 21 9 

  12  27   72 

4  17 11 

Applying R1  R1  R3 and R2  R2  3R3 

0 4  2 0 2  1 

  0  78   39  2 (39) 0 2 1 [Taking 2 common from R1 and 39 common from R2] 

4  17 11 4  17 11 

= 78 × 0 = 0 (Since R1 and R2 are identical) Ans. 

 

b  c  c  a  a  b 

Example 11. Show that   c  a  a  b b  c  = 0 

a  b b  c  c  a 

b  c  c  a  a  b 

Solution. Let   c  a a  b b  c 

a  b b  c  c  a 

Applying C1  C1  C2  C3, we get 

0 

  0 

0 

c  a  a  b 

a  b  b  c  0 

b  c  c  a 

 
 

 

 

Example 12. Without expanding, evaluate the determinant 

sin 

sin  

sin

cos 

cos  

cos

sin( +  ) 

sin(  +  ) . 

sin( + ) 

 

Solution. Let 

 

 

 



sin 

   sin

sin 

sin 

   sin

sin 

cos 

cos  

cos 

cos  

cos  

cos 

sin ( ) 

sin (  ) 

sin (  ) 

sin  cos   cos sin  

sin cos   cossin  

sin  cos   cos sin 

[Since sin (A + B) = sin A cos B + cos A sin B] 
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sin 

    sin

sin 

cos   0 

cos  0 

cos   0 

 

[Applying C3  C3  cos.C1  sin .C2] 

  = 0 [Since  C3 consists of all zeros]  Ans. 

2x – 1  x + 7 x + 4  

Example 13. Solve the determinantal equation x 6 2  0 

x – 1 x +1 3 
 

2x 1 x  7 x  4 

Solution. Given equation x 

x 1 

6 2  0 

x 1 3 

0 0 

 

 

x  1 

By applying R1  R1 – (R2 + R3), we get 
x 

x  1 

6 2  0 

x  1 3 

On expanding by first row, we get 

(x – 1) (x2 + x – 6x + 6) = 0   (x – 1) (x – 2) (x – 3) = 0   x = 1, 2, 3 Ans. 

Example 14. Using the properties of determinants, show that 

x+  y x x 

5x + 4y 4x 2x 

10x + 8y  8x  3x 

x  y x x 

= x3. 

Solution. Let    5x  4y 

10x  8y 

4x  2x 

8x  3x 

Operate : R2  R2  2 R1 ; R3  R3  3R1 

x  y x x 

  3x  2y 2x 0 

7x  5y  5x  0 
Expand by C3   x 

3x  2y  2x 

7x  5y  5x 

= x [5x (3x + 2y) – 2x (7x + 5y)] 

= x [15x2 + 10 xy – (14x2 + 10 xy)] = x3. Proved. 

Example 15. Using the properties of determinants, evaluate the following : 

0 ab2 ac2 

a2b 0 bc2 

a2c  cb2 
0 

0 ab2 ac2 

Solution. Let   a2b 0 bc2 

a2c  cb2 
0 

0  a  a 
2  2  2 

Take a2, b2 and c2 common from C1, C2 and C3 respectively,   a b c b  0  b 

c c  0 
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0 0 a 
     

Operate : C2  C2  C3 ,   a2 b2 c2    b   b  b 

 

 
 

c c 0 

  a2 b2 c2 . a 
b   b  

 a3 b2 c2 (bc  bc)  2a3 b3 c3. 

 

 

 c c 

Example 16. Using properties of determinants, prove that 

 

x y z 

x
2 

y
2 

x
3 

y
3 

z2 = x y z(x – y)(y – z) (z – x). 

z
3 

x y z 1 1 1 

Solution. Let              x2 y
2 

z
2 

 xyz x y z 

x
3 

y
3 

z
3 

x
2 

y
2 

z
2 

 

0 0 1 

Operate : C1  C1  C2 ; C2  C2  C3 ,   xyz x  y y  z z 

x2  y2 y2  z2 z2 

 
On expanding by R ,    xyz x  y y  z  xyz (x  y) (y  z) 

1 1 

1 x2  y2 y2  z2 x  y y  z 

= xyz (x – y) (y – z) (z – x). Proved. 

Example 17. Using the properties of determinants, show that 

a + x y z 

x a +  y  z = a2 (a + x +  y + z). 

x  y a + z 

 

Solution. Let 

a  x y z 

  x a  y z 

x y a  z 

a  a 0 

Operate : R1  R1  R2 ,   x  a  y z 

x y a  z 

a 0 0 

Operate : C2  C2  C1 ,    x  a  y  x z 

x y  x a  z 

 

On expanding by R1   a 
a  y  x z 

y  x a  z 

 

= a [(a + y + x) (a + z) – (y + x) z] 

= a [a2 + az + (y + x) a + (y + x) z – (y + x) z] 

= a2 (a + x + y + z). Proved. 
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Example 18.  If   is the one of the imaginary cube roots of unity, find the value of the determinant 

  

  

  

1  2 

Solution. The given determinant    2 1 

2 1 

By R1  R1  R2  R3, we get 

1     2 1    2 1    2 0 0 0 

  2 1    2 1 
 

[Since 1 +  + 2 = 0] 

2 1  2 1 

= 0 (Since each entry in R1 is zero) Ans. 

a  b  c 
Example 19. Without expanding the determinant, show that (a + b + c) is a factor of 

 

a  b  c 

b c  a . 

c a  b 

Solution. Let 

 

 

 

Operate : C1  C1  C2  C3 , 

 (a + b + c) is a factor of . 

  b c a 

c  a  b 

a  b  c  b c 

  a  b  c c a 

a  b  c  a  b 

 

 

 

1 

 (a  b  c) 1 

1 

 

 

 

b c 

c  a 

a  b 
Proved. 

Example 20. Using properties of determinants, prove that : 

x + 4 x x 

x x + 4 x = 16 (3x + 4). 

x x x + 4  

x  4 x x 

Solution. Let   x x  4 x 

x x x  4 

3x  4 x x 

Operate : C1  C1  C2  C3 , 
   3x  4 x  4 x 

 
1 x x 

3x  4 

1 

x x  4 

x x 

 (3x  4) 1 

1 

 16 (3x  4) 

x  4 x 

x x  4 

 (3x  4) 0  4  0 

0  0  4 

R2  R1 

R3  R1 

 (3x  4) 
4  0 

0  4 

 

 

 

Proved. 
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Example 21. Without expanding the determinant, prove that 

1  a  b + c   

1  b  c + a = 0. 

1  c a +b 

1  a  b  c 

Solution. Let   1 

1 

b 

c 

c  a 

a  b 

 

  1 a a  b  c  1  a 1 

Operate : C3  C3  C2,    1 b a  b  c  (a  b  c) 1  b 1 

  1 c a  b  c  1  c 1 

 

= 0 (∵ C1 and C3 are identical). Proved. 

 

             
 

 

Example 22. Evaluate 

 

a – b – c  2a 2a 

2b b  –  c  –  a 2b 

2c 2c c  –  a  –  b  

a  b  c  a  b  c  a  b  c 

Solution. By R1  R1 + R2 + R3, we get 2b b  c  a 2b 

2c 2c c  a  b 

1 1 1 

 (a  b  c) 2b  b  c  a 2b 

2c 2c c  a  b 

1 0 0 

 (a  b  c) 2b (a  b  c) 0 C2  C1 

2c 0 (a  b  c) C3  C1 

On expanding by first row = (a + b + c) (a + b + c)2 = (a + b + c)3. Ans. 
 

 

Example 23. Show, without expanding 

1 1 1 

x y z 

 

= (x – y)(y – z)(z – x). 

x
2 

y
2 

z 
2 

 

 

0 0 1 x  y y  z 

Solution. By C1 – C2, C2 – C3, we get  x  y y  z z 

x2  y2 y2  z2 z2 


x2  y2 y2  z2 

 

 (x  y) ( y  z) 

 

1 1 

x  y y  z 

On expanding by first row, we get 

= (x – y) (y – z) (y + z – x – y) =(x – y) (y – z) (z – x).Proved. 

  

Example 24. Prove that 



 

 


               

               
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  

Solution. Let    2 2 2 . 

              

 

           = |

𝛼 𝛽 𝛾

𝛼2 𝛽2 𝛾2

𝛼 + 𝛽 + 𝛾 𝛼 + 𝛽 + 𝛾 𝛼 + 𝛽 + 𝛾
| [Applying R3  R1  R3] 

  

= ( +  + ) 2 2 2 
[Taking out ( +  + ) common from R3] 

1 1 1 

 
          

 (     ) 2  2  2 2  2 

1 0 0 

Applying C2  C2  C1 

C3  C3  C1 

 



 (     ) (  ) (  ) 2 

1 1 

           
 

 

 (    ) (  ) (  ).1 

1 0 0 

1 1 

            

 

 

 

[Expanding along R3] 

= ( +  + ) ( – ) ( – ) ( +  –  – ) 

= ( +  + ) ( – ) ( – ) ( – ) Proved. 

3a –a + b –a + c  

Example 25. Show that – b + a 3b –b + c = 3(a + b + c) (ab + bc + ca) 

– c + a –c + b 3c 
 

3a  a  b  a  c  

Solution. Let    b  a 3b  b  c 

 c  a  c  b 3c 

  a  b  c  a  b  a  c 

Applying C1  C1  C2  C3, we get    a  b  c 

a  b  c 

3b 

 c  b 

 b  c 

3c 

1   a  b   a  c 

(a  b  c) 1 3b  b  c [Taking (a + b + c) common from C1 ] 

1   c  b 

1   a  b 

3c 
 

 a  c 

= (a  b  c) 0 2b  a  b  a [Applying R2  R2  R1, R3  R3  R1] 

0   c  a 2c  a 

 (a  b  c) 
2b  a 

 c  a 

 b  a 

2 c  a 
[Expanding along C1] 
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= (a + b + c) [(2b + a) (2c + a) – (– b + a) (– c + a)] 

= (a + b + c) {(4bc + 2ab + 2ca + a2 – (bc – ab – ac + a2)} 

= (a + b + c) (3bc + 3ab + 3ca)= 3(𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)         Proved. 

 

Property (vi)  If each element of a row (or column) of a determinant consists of the algebraic sum of 

n terms, the determinant can be expressed as the sum of n determinants, 

Let Δ = |

𝑎1 + 𝑝1 + 𝑞1 𝑏1 𝑐1

𝑎2 + 𝑝2 + 𝑞2 𝑏2 𝑐2

𝑎3 + 𝑝3 + 𝑞3 𝑏3 𝑐3

| 

= (a1 + p1 + q1) (b2c3 – b3c2) – (a2 + p2 + q2) (b1c3 – b3c1) + (a3 + p3 + q3) (b1c2 – b2c1) 

= a1 (b2c3 – b3c2) – a2 (b1c3 – b3c1) + a3 (b1c2 – b2c1) 

+ p1 (b2c3 – b3c2) – p2 (b1c3 – b3c1) + p3 (b1c2 – b2c1) 

+ q1 (b2c3 – b3c2) – q2 (b1c3 – b3c1) + q3 (b1c2 – b2c1) 

a1 b1 

 a2  b2 

a3  b3 

c1  p1 b1 

c2  p2 b2 

c3 p3  b3 

c1  q1 b1 c1 

c2  q2  b2  c2 

c3 q3  b3  c3 

 

 

Proved. 

 

 

                    Example 31. If 

a a2 

b b2 

c c2 

a3 – 1 

b3 – 1 

c3 – 1 

 

 

= 0, 

 

 

prove that abc = 1. 

 

 

Solution. 

a a2 

b b2 

c c2 

a3  1 

b3  1 

c3  1 

1 

 

 0 




a  a2 

a a2 a3 

b b2 b3 

c c2 c3 

a a2  1 

a  a2 

 b  b2 

c c2 

1 

1  0 

1 

 
abc 1 

1 

b b2 

c c2 

 b  b2 

c  c2 

1  0 

1 

(Taking out common a, b, c from R1, R2 and R3 from 1st determinant) 

a2 a  1 

b2  b  1 


c2 c  1 

a
2 

b2   0 

c
2 

 

 

(Interchanging C2 and C3) 

a
2 

 
b 

c
2 

 

 

 

 
( a b c  1 ) 

1  a  a2 

 1  b  b2  0 

1  c c2 

1 a a 2 

1 b b 2  0 

1 c c 2 

 

 

(Interchanging C1 and C2 ) 

 1 a 

abc 1 b 

 1 c 

 
1 a 

abc 1 b 

 1 c 

 

2 
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 abc  – 1=0 

 abc = 1.         



Example 32. Show that x = – (a + b + c) is one root of the equation: 

x + a b c 

b x + c a = 0 and solve the equation completely. 

c a x + b   

  Solution. By C1  C1 + C2 + C3, we get 

1 

 
(x  a  b  c) 1 

1 

b c 

x  c a  0 

a x  b 
 

1 

 (x  a  b  c) 0 

0 

b c 

x  b  c a  c 

a  b x  b  c 

 

 0, 

 

R2  R2  R1; 

 

R3  R3  R1 

On expanding by first column, we get 

(x + a + b + c) [(x – b + c) (x + b – c) – (a – b) (a – c)] = 0 

 (x + a + b + c) [x2 – (b – c)2 – (a2 – ac – ab + bc)] = 0 

 (x + a + b + c) (x2 – b2 – c2 + 2bc – a2 + ac + ab – bc] = 0 

 (x + a + b + c) (x2 – a2 – b2 – c2 + ab + bc + ca) = 0 

Either x + a + b + c = 0  x = – (a + b + c) 

or x2 – a2 – b2 – c2 + ab + bc + ca = 0 

 x = 

Hence, x = – (a + b + c) is one root of the given equation. Proved. 

 

 

 

Example 33. Find the value of           

 

  |

(𝑏 + 𝑐)2 𝑎2 𝑎2

𝑏2 (𝑐 + 𝑎)2 𝑏2

𝑐2 𝑐2 (𝑎 + 𝑏)2 

|. 

 

 

Solution. By C1 – C3, C2 – C3, we get 

(b  c)2  a2 

b2  b2 

c2  (a  b)2 

a2  a2 

(c  a)2  b2 

c2  (a  b)2 

a
2 

b
2 

(a  b)2 

a2  b2  c2  ab  bc  ca 
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

(a  b  c) (b  c  a) 0 a2 

 0 (a  b  c) (c  a  b) b2 

(a  b  c) (c  a  b)  (a  b  c)(c  a  b)  (a  b)2 

On taking out (a + b + c) as common from 1st and 2nd column, we get 

                             = (𝑎 + 𝑏 + 𝑐)2 |
𝑏 + 𝑐 − 𝑎 0 𝑎2

0 𝑐 + 𝑎 − 𝑏 𝑏2

𝑐 − 𝑎 − 𝑏 𝑐 − 𝑎 − 𝑏 (𝑎 + 𝑏)2
| 

               = (𝑎 + 𝑏 + 𝑐)2 |
−𝑎 + 𝑏 + 𝑐 0 𝑎2

0 𝑎 − 𝑏 + 𝑐 𝑏2

−2𝑏 2𝑎 2𝑎𝑏

|    𝑅3 → 𝑅3 − (𝑅1 + 𝑅2) 

 

 

 a  b  c 0 a2 

  2 (a  b  c)2 0 a  b  c b2 

b a  ab 

On expanding by first row, we get 

= – 2 (a + b + c)2 [(– a + b + c) {– ab (a – b + c) – ab2} + a2 {0 – b (a – b + c)}] 

= – 2 (a + b + c)2 [(– a + b + c) (– a2b – abc) – a2b (a – b + c)] 

= – 2ab (a + b + c)2 [(– a + b + c) (– a – c) – a (a – b + c)] 

= – 2ab (a + b + c)2 (a2 + ac – ab – bc – ac – c2 – a2 + ab – ac] 

= – 2ab (a + b + c)2 (– bc – ac – c2) 

= 2abc (a + b + c)2 (b + a + c) 

= 2abc (a + b + c)3. Ans. 

a + x  a –  x  a  –  x  

Example 34. Using properties of determinants, solve for x : a  –  x  a + x  a –  x = 0  

a  –  x  a – x  a + x  

a  x  a  x  a  x 

Solution. Given that a  x  a  x  a  x  0 

a  x  a  x  a  x 

 

Applying C
1 
 C

1 
 C

2 
 C

3 

3a  x  a  x  a  x 

3a  x a  x a  x   0 

3a  x a  x a  x 

1 

 (3a  x) 1 

1 

a  x  a  x 

a  x  a  x  0 

a  x  a  x 

 

 

 

1  a  x  a  x 

Now, R2  R2  R1 
and R3  R3  R1, 

 (3a  x) 0 2x 0  0 

 

Expanding by C1, we get 
 

(3a  x) (4x2  0)  0 

0 0 2x 

 4x2 (3a  x)  0  If 4x2  0, then x  0 

 If 3a  x  0, then x  3a 

Hence, x = 0 or 3a Ans.  
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Exercise 2.4 

`   

     Prove the following: 
 

 

1. 

 

b
2
c

2 

c
2
a

2 

a
2
b

2 

bc b  c 

ca c  a  0 

ab  a  b 

 

 

2. 

1  a  a2  bc 

1  b  b2  ca 

1  c  c2  ab 

 

 

 0. 

a a  b a  b  c 1 1 1 

3. 
2a 3a  2b 

3a  6a  3b 

4a  3b  2c 

10a  6b  3c 

 a3. 
4. 

  

    

 (  ) (  ) (  ). 

1  a  a2 1  a bc a2 bc ac  c2 

5. 1  b  b2   1 b ca 6. a2  ab b2 ac  4a2b2c2 

1 c c2 1  c ab ab b2  bc c2 

 

                              Expand the following determinants, using properties of the determinants: 

 

      7. |
1 3 7

4 9 1

2 7 6

|   Ans. 51                        8. |
𝑥 𝑎 𝑎
𝑎 𝑥 𝑎
𝑎 𝑎 𝑥

|   Ans. (𝑥 + 2𝑎)(𝑥 − 𝑎)2. 

       

      9. Solve the equation 

 

   |
𝑥3 − 𝑎3 𝑥2 𝑥
𝑏3 − 𝑎3 𝑏2 𝑏
𝑐3 − 𝑎3 𝑐2 𝑐

| = 0, 𝑏 ≠ 𝑐, 𝑏𝑐 ≠ 0.        Ans. 𝑥 =
𝑎3

𝑏𝑐
, 𝑥 = 𝑏, 𝑥 = 𝑐. 

 

      10.  Using properties of determinant prove that: 

    

           |
𝑥 + 4 2𝑥 2𝑥

2𝑥 𝑥 + 4 2𝑥
2𝑥 2𝑥 𝑥 + 4

| = (5𝑥 + 4)(4 − 𝑥)2. 

 

     11. Without expanding the determinant, prove that 

 

            |
|

1

𝑎
𝑎 𝑏𝑐

1

𝑏
𝑏 𝑐𝑎

1

𝑐
𝑐 𝑎𝑏

|
| = 0. 

 

                  12. Without expanding the determinant, prove that 

 

           |
𝑥 + 𝑦 𝑦 + 𝑧 𝑧 + 𝑥

𝑧 𝑥 𝑦
1 1 1

| = 0. 
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2.8 Factor theorem 

If the elements of a determinant are polynomials in a variable x and if the substitution x = a 

makes two rows (or columns) identical, then (x – a) is a factor of the determinant. 

When two rows are identical, the value of the determinant is zero. The expansion of a determinant 

being polynomial in x vanishes on putting x = a, then x – a is its factor by the Remainder 

theorem. 

1 1 1 

Example 35. Show that x y z = (x – y)(y – z)(z – x) 

x
2 

y
2 

z 
2 

Solution. If we put x = y, y = z, z = x then in each case two columns become identical and the 

determinant vanishes. 

 (x – y), (y – z), (z – x) are the factors. 

Since the determinant is of third degree, the other factor can be numerical only k (say). 
 

1 1 1 

x y z 

 

 k (x  y) ( y  z) (z  x) 

 

... (1) 

x
2 

y 
2 

z 
2 

This leading term (product of the elements of the diagonal elements) in the given determinant 
is yz2 and in the expansion 

k (x – y) (y – z) (z – x) we get kyz2 

Equating the coefficient of yz2 on both sides of (1), we have 

k = 1 

Hence the expansion = (x – y) (y – z) (z – x). Proved. 

 

 

1 1 1 

Example 36. Factorize  = a2 b2 c2 

a
3 

b
3 

c
3 

Solution. Putting a = b, C1 = C2 and hence  = 0. 

 a – b is a factor of . Similarly b – c, c – a are also factors of . 

 (a – b) (b – c) (c – a) is a third degree factor of  which itself is of the fifth degree as is 

judged from the leading term b2c3. 

 The remaining factor must be of the second degree. As  is symmetrical in a, b, c the 

remaining factor must, therefore, be of the form k (a2 + b2 + c2) + l (ab + bc + ca) 

  = (a – b) (b – c) (c – a) {k (a2 + b2 + c2) + l (ab + bc + ca)} 

If k  0, we shall get terms like a4b, b4c etc. which do not occur in . Hence, k must be zero. 

  = (a – b) (b – c) (c – a) {0 + l (ab + bc + ca)} 

or  = l (a – b) (b – c) (c – a) (ab + bc + ca) 

The leading term in  = b2c3. The corresponding term on R.H.S = l b2c3 

 l = 1 

Hence,  = (a – b) (b – c) (c – a) (ab + bc + ca). Ans
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2 

 

2.9 Conjugate elements 

Two equidistant elements lying on a line perpendicular to the leading diagonal are said to be 

conjugate.  

a1 b1 

In the determinant 
a2 b2 

a3 b3 

c1 

c2 , 

c3 

 

a2 , b1 ; 

 

a3 , c1 ; 

 

b3 , c2 ; are pairs of conjugate elements. 

2.10 Special types of determinants 

2.10.1 Orthosymmetric Determinant. If every element of the leading diagonal is the same 

and the conjugate elements are equal, then the determinant is said to be orthosymmetric 

determinant. 
 

a h g 

h a f 

g f a 

2.10.2 Skew-Symmetric Determinant. If the elements of the leading diagonal are all zero 

and every other element is equal to its conjugate with sign changed, the determinant is said to be 

Skew- symmetric. 

                     |
0 −𝑎 −𝑏
𝑎 0 −𝑐
𝑏 𝑐 0

| 

 

Property 1. A Skew-symmetric determinant of odd order vanishes. 

Property 2. A skew-symmetric determinant of even order is a perfect square. 

 

2.11 Application of determinants 

Area of triangle. We know that the area of a triangle, whose vertices are (x1, y1), (x2, y2) and 

(x3, y3) is given by 

   
1 
 x1 ( y2  y3)  x2 ( y1  y3)  x3 ( y1  y2 )

Note. Since area is always a positive quantity, therefore we always take the absolute value of 

the determinant for the area. 

Condition of collinearity of three points. Let A (x1, y1), B (x2, y2) and C (x3, y3) be three 

points. Then, 

A, B, C are collinear  area of triangle ABC  0 

x1 

 
1  

x 
2 

x3 

y1  1 

y2  1  0 

y3  1 

x1 

 x2 

x3 

y1  1 

y2  1  0 

y3  1 

 

 

Proved. 

 

 

2 
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Example 37. Using determinants, find the area of the triangle with vertices (– 3, 5), (3, – 6)     

and (7, 2). 

 

Solution. The area of the given triangle is 

 Δ =
1

2
|
−3 5 1
3 −6 1
7 2 1

| =
1

2
(−3(−6 − 2) − 5(3 − 7) + 1(6 + 42)) 

=
1

2
(24 + 20 + 48) = 46 𝑢𝑛𝑖𝑡2. 

Example 38. Using determinants, show that the points (11, 7), (5, 5) and (– 1, 3) are collinear. 

 

 

Solution. The area of the triangle formed by the given points is 

 Δ =
1

2
|
11 7 1
5 5 1

−1 3 1
| =

1

2
(11(5 − 3) − 7(5 + 1) + 1(15 + 5)) 

=
1

2
(22 − 42 + 20) = 0. 

 

   It follows that the given three points are lying on a straight line, that means, they are collinear. 

  
 

Exercise 2.5 

       Using determinants, find the area of the triangle with vertices: 

1. (2,– 7), (1, 3), (10, 8). Ans. Area  

2.  (– 1, – 3), (2, 4) and (3, – 1). Ans. Area = 11  

3. 3. (1, – 1), (2, 4) and (– 3, 5). Ans. Area =13 

4. Using determinants, show that the points (3, 8), (– 4, 2) and (10, 14) are collinear. 

5. Find the value of , so that the points (1, – 5), (– 4, 5) and (, 7) are collinear. 

Ans.  = –5 

6. Find the value of x, if the area of  is 35 square cms with vertices (x, 4), (2, – 6), (5, 4). 

Ans. x = – 2, 12 

7. Using determinants find the value of k, so that the points (k, 2 – 2k), (– k + 1, 2k) and 

1 
(– 4 – k, 6 – 2 k) may be collinear. Ans. k = –1, 

2 

                                   8.  If the points (x, – 2), (5, 2) and (8, 8) are collinear, find x using determinants. Ans.x = 3 

                                   9.  If the points (3, – 2), (x, 2) and (8, 8) are collinear, find x using determinants. Ans. x = 1 

 

 

 

2.12  Rule for multiplication of two determinants 

Multiply the elements of the first row of 1 with the corresponding elements of the first, the 

second and the third row of 2 respectively. 

Their respective sums form the elements of the first row of 12. Similarly multiply the 

elements of the second row of 1 with the corresponding elements of first, second and third row of 2 

to form the second row of 12 and so on. 

 

 

Example 39. Find the product 

a b

a b

a b

c 

c   

c 

 

  

 
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Solution. Product of the given determinants 

=

a11  b11  c11  

 a21  b21  c21 

a31  b31  c31  

a12  b12  c12 

a22  b22  c22 

a32  b32  c32  

a13  b13  c13 

a23  b23  c23 

a33  b33  c33  

 

 

Ans. 

 

 

 

Example 40. Prove that the determinant 

2b1 + c1 

2b2 + c2 

2b3 + c3 

is a multiple of the determinant 

c1 + 3a1 

c2 + 3a2 

c3 + 3a3 

2a1 + 3b1 

2a2 + 3b2 

2a3 + 3b3 

a1 b1 c1 

a2  b2  c2 

a3  b3 c3 

 

 

and find the other factor. 

 

 

Solution. 

2b1  c1 

2b2  c2 

2b3  c3 

c1  3a1 

c2  3a2 

c3  3a3 

2a1  3b1 

2a2  3b2 

2a3  3b3 

a1 b1 

 a2  b2 

a3  b3 

c1 

c2 

c3 

0  2  1 

3  0  1 

2  3  0 

 

 

Ans. 

 cos     cos   

Example 41. Prove that cos     cos     

cos    cos     




Solution. 

cos  

cos 

cos 

sin  

sin 

sin 

0 cos

0  cos

0 cos 

sin  

sin 

sin 

0 

0  0 

0 

cos2    sin2 

or 
cos  cos   sin sin 

cos  cos   sin  sin 

cos  cos    sin sin 

cos2   sin2 

cos  cos    sin  sin 

cos  cos   sin sin 

cos  cos   sin sin   0 

cos2   sin2 

1 cos(  )  cos (  ) 

or 
cos (  )  1 cos(  )  0 

cos (  ) cos (  )  1 
Proved
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Miscellaneous MCQ Exercises 

1. The determinant of a 2×2 matrix 𝐴 = [
𝑎 𝑏
𝑐 𝑑

] is given by:  

(A) a + d 

(B) ad - bc 

(C) ab + cd 

(D) ac - bd 

Answer: (B) ad - bc 

2. If the determinant of a square matrix is zero, then the matrix is:  

(A) Singular 

(B) Non-singular 

(C) Invertible 

(D) Identity matrix 

Answer: (A) Singular 

3. If 𝐴 = [
2 3
4 𝑥

] and det(A) = 10, then the value of x is:  

(A) 1 

(B) 2 

(C) 3 

(D) 11 

Answer: (D) 11 

4. If det(A) = 5, then the determinant of kA for a 3×3 matrix is: 

             (A) 5𝑘3 

             (B) 5𝑘2 

             (C) 5𝑘4 

             (D) 5𝑘 

          Answer: (A) 5𝑘3 

5. If A is a 3×3 matrix such that det(A) = 7, then what is det(A⁻¹)? 

   (A) 7 

   (B) 1/7 

   (C) 0 

   (D) -7 

   Answer: (B) 1/7 

6. If 𝐴 = |
1 2 3
4 5 6
7 8 9

| then det(A) is: 

  (A) 0 

  (B) 1 

  (C) 2 

  (D) 3 

 Answer: (B) 3 

7. If det(A) = 3 and det(B) = 4 for two 2×2 matrices A and B, then det(AB) is:  
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   (A) 7 

   (B) 12 

   (C) 1 

   (D) 0 

 Answer: (B) 12 

8. The determinant of an identity matrix of any order is:  

 (A) 0 

 (B) 1 

 (C) -1 

 (D) Depends on the order 

 Answer: (B) 1 

9. If a row or column of a determinant is multiplied by a scalar k, then the determinant is:  

(A) Unchanged 

(B) Multiplied by k 

(C) Multiplied by kn (where n is the order of the matrix) 

(D) Multiplied by kn-1 

Answer: (C) Multiplied by kn 

10. The determinant of a triangular matrix (upper or lower) is:  

(A) The sum of diagonal elements 

(B) The product of diagonal elements 

(C) Always 0 

(D) Always 1 

Answer: (B) The product of diagonal elements 
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Chapter 4 

Systems of Linear Equations 

4.1 Introduction: 

Systems of linear equations play an important and motivating role in the subject of linear 

algebra. In fact, many problems in linear algebra reduce to finding the solution of a system of 

linear equations. Thus, the techniques introduced in this chapter will be applicable to abstract 

ideas introduced later. On the other hand, some of the abstract results will give us new insights 

into the structure and properties of systems of linear equations.  

4.2 Systems of Linear Equations in Two Variables: 

Linear systems are a fundamental part of linear algebra, a subject used in most 

modern mathematics. Computational algorithms for finding the solutions are an important part of 

numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer 

science, and economics. A system of non-linear equations can often be approximated by a linear 

system, a helpful technique when making a mathematical model or computer simulation of a 

relatively complex system. 

To establish basic concepts of Linear Systems, let’s consider the following simple 

example:   If 2 adult tickets and 1 child ticket cost 32, and if 1 adult ticket and 3 child tickets cost 

36, what is the price of each? 

How to find it ? 

 Let:     = price of adult ticket 

            = price of child ticket 

 Then:                                                                

             

Now we have a system of two linear equations in two variables. It is easy to find 

ordered pairs (x, y) that satisfy one or the other of these equations. For example, the ordered pair 

(16, 0) satisfies the first equation but not the second, and the ordered pair (24, 4) satisfies the 

second but not the first.  

To solve this system, we must find all ordered pairs of real numbers that satisfy both 

equations at the same time. In general, we have the following definition: 
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Systems of Linear Equations in Two Variables: Systems of Two Linear Equations in Two 

Variables Given the linear system 

                                                       

                                                      

where a, b, c, d, h, and k are real constants, a pair of numbers        and        also written as 

an ordered pair           is a solution of this system if each equation is satisfied by the pair. The set 

of all such ordered pairs is called the solution set for the system. To solve a system is to find its 

solution set. 

A system of linear equations is consistent if it has one or more solutions and inconsistent if 

no solutions exist. Furthermore, a consistent system is said to be independent, if it has exactly one 

solution (often referred to as the unique solution) and dependent, if it has more than one solution. 

Two systems of equations are equivalent if they have the same solution set. 

Possible Solutions to a Linear System:   The linear system 

            

            

must have    (i) Exactly one solution (Consistent and independent) 

                                               or 

         (ii) No solution (Inconsistent) 

                                               or 

        (iii) Infinitely many solutions (Consistent and dependent) 

There are no other possibilities. 

We will consider three methods of solving such systems: 

1. Graphing,  

2. Substitution, 

3. Elimination by addition. 

Each method has its advantages, depending on the situation. 

Graphing:  Recall that the graph of a line is a graph of all the ordered pairs that satisfy the 

equation of the line. To solve the ticket problem by graphing, we graph both equations in the same 

coordinate system. The coordinates of any points that the graphs have in common must be solutions 

to the system since they satisfy both equations. 
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►Example: (Solving a System by Graphing) Solve the ticket problem by graphing: 

                                                                                

            

Solution:  An easy way to find two distinct points on the first line is to find the   and   intercepts. 

Substitute       to find the  -intercept,        , so         and substitute       to find the 

 -intercept y = 32. Then draw the line through (16, 0) and (0, 32). After graphing both lines in the 

same coordinate system (Fig. 1), estimate the coordinates of the intersection point: 

 

 

 

 

 

                              

                                                               (Fig. 1) 

      , Price of Adult ticket 

     ,   Price of Child ticket 

►Exercise: Solve each of the following systems by graphing: 

(1)              

                   

(2               

               

(3)              

                    

Substitution: Now we review an algebraic method that is easy to use and provides exact 

solutions to a system of two equations in two variables, provided that solutions exist. In this 

method, first we choose one of two equations in a system and solve for one variable in terms of the 

other. (We make a choice that avoids fractions, if possible.) Then we substitute the result into the 

other equation and solve the resulting linear equation in one variable. Finally, we substitute this 

result back into the results of the first step to find the second variable. 

 

 ►Example: (Solving a System by Substitution) Solve by substitution: 
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Solution: Solve either equation for one variable in terms of the other; then substitute into the 

remaining equation. In this problem, we avoid fractions by choosing the first equation and solving 

for   in terms of   as- 

                                                 (Solve the first equation for   in terms of  .) 

              →                             (Substitute into the second equation.) 

           Now,           5               (Second equation) 

→                                (Solve for x, i.e. putting the value of y) 

            →                      

→             

            →               

Now, replace   with 1 in            to find  : 

                                                               

                                                      (Replace   with 1 ) 

                       →                  

Hence the solution is              or (1, -1) 

►Exercise:  Solve by substitution: 

              

             

Elimination by Addition: The methods of graphing and substitution both work well for 

systems involving two variables. However, neither is easily extended to larger systems. Now we 

turn to elimination by addition. This is probably the most important method of solution. It readily 

generalizes to larger systems and forms the basis for computer-based solution methods. 

To solve an equation such as           , we perform operations on the equation until we 

reach an equivalent equation whose solution is obvious. 

                                                         (Add 5 to both sides) 

                                  →                       (Divide both sides by 2.) 

                                                         

Operations That Produce Equivalent Systems:  A system of linear equations is transformed into an 

equivalent system if 

(1) Two equations are interchanged. 

(2) An equation is multiplied by a nonzero constant. 
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(3) A constant multiple of one equation is added to another equation 

Any one of the above three operations in can be used to produce an equivalent system, but the 

operations that will be of most use to us now we discus. The use of above rule is best illustrated by 

examples. 

►Example: (Solving a System Using Elimination by Addition) Solve the following system using 

elimination by addition: 

             

              

Solution:  We use above rule to eliminate one of the variables, obtaining a system with an obvious 

solution: 

                                                        ……………(i) 

                                                              …………..(ii) 

      Multiply the equation (i) by 5 and the equation (ii) by 2 we get, 

                  

                   

i.e.,                                                                         

              

Add the top equation to the bottom equation and eliminating the y terms we get, 

                                                                             

Divide both sides by 19,                                 

Knowing that        we substitute this number back into either of the two original equations (we 

choose the second) to solve for y: 

                 

                                                             →                         

                                                            →                            

Hence the solution is              or        

►Exercise: Solve the following system using elimination by addition: 

                                                                                 

             

Applications:  Many real-world problems are solved readily by constructing a mathematical model 

consisting of two linear equations in two variables and applying the solution methods that we have 

discussed. We shall examine two applications in detail. 
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►Exercise:  Jasmine wants to use milk and orange juice to increase the amount of calcium and 

vitamin A in her daily diet. An ounce of milk contains 37 milligrams of calcium and 57 micrograms 

of vitamin A. An ounce of orange juice contains 5 milligrams of calcium and 65 micrograms of 

vitamin A. How many ounces of milk and orange juice should Jasmine drink each day to provide 

exactly 500 milligrams of calcium and 1,200 micrograms of vitamin A? 

 

Most linear systems of any consequence involve large numbers of equations and variables. It 

is impractical to try to solve such systems by hand. In the past, these complex systems could be 

solved only on large computers. Now there are a wide array of approaches to solving linear systems, 

ranging from graphing calculators to software and spreadsheets. In the rest of this chapter, we 

develop several matrix methods for solving systems with the understanding that these methods are 

generally used with a graphing calculator. It is important to keep in mind that we are not presenting 

these techniques as efficient methods for solving linear systems by hand. Instead, we emphasize 

formulation of mathematical models and interpretation of the results, two activities that graphing 

calculators cannot perform for you. 

4.3 linear systems:  

In mathematics, a system of linear equations (or linear systems) is a collection of two or 

more linear equations involving the same variables. For example, linear equations involving the 

variables       may be in the form- 

               

                                     

               

Each of the equations, from the systems of linear equations are called linear equation. So, 

Systems of linear equations can be considered as a collection of linear equations. 

A linear equation in variables                  is an equation of the form 

                        

  where               and   are constant real complex numbers. The constant    is called the 

coefficient of     and   is called the constant term of the equation. 

A system of linear equations (or linear system) is a finite collection of linear equations 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Linear_equation
https://en.wikipedia.org/wiki/Variable_(math)
https://en.wikipedia.org/wiki/Linear_equation
https://en.wikipedia.org/wiki/Variable_(math)
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in same variables. For instance, a linear system of m equations in n variables    

               can be written as- 

                          

                          

                                               …………………………………… 

                                      …………………………………… 

                          

                                                [ linear system (1.1) ] 

A solution of a linear system (1.1) is a tuple (s1, s2, ..., sn ) of numbers that makes each 

equation a true statement when the values s1, s2, ... ,sn are substituted for            , 

respectively. The set of all solutions of a linear system is called the solution set of the 

system. 

Theorem: Any system of linear equations has one of the following exclusive conclusions. 

(1) No solution. 

(2) Unique solution. 

(3) Infinitely many solutions. 

A linear system is said to be consistent if it has at least one solution and is said to be 

inconsistent if it has no solution. 

4.4 Geometric interpretation: 

The following three linear systems 

                           (a)…{

   
    
     

        
        
        

 

                           (b)…{

   
    

     

        
        
        

 

                           (c)…{
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Have no solution, a unique solution, and infinitely many solutions, respectively. See the 

below Figure. 

 

Note: A linear equation of two variables represents a straight line in R
2
. A linear equation of 

three variables represents a plane in R
3
. In general, a linear equation of n variables represents a 

hyper-plane in the n-dimensional Euclidean space R
n
. 

 

4.5 Solution of linear equations by determinants (Cramer’s rule):  
 

In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear 

equations with as many equations as unknowns, valid whenever the system has a unique solution. It 

expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices 

obtained from it by replacing one column by the column vector of right-sides of the equations. It is 

named after Gabriel Cramer, who published the rule for an arbitrary number of unknowns in 1750, 

although Colin Maclaurin also published special cases of the rule in 1748 and possibly knew of it as 

early as 1729. 

Cramer's rule, implemented in a naive way, is computationally inefficient for systems of 

more than two or three equations 

 

Let us solve the following equations. 
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Let us write these equations in the form        . 

[
      
      
      

] [
 
 
 
]  [

  

  

  

] 

Let, 

   |
       
       
       

| and     |
       
       
       

|     |
       
       
       

|     |
       
       
       

| 

Then,                               
  

 
,     ,         

  

 
,    ,         

  

 
 

►Example: Solve the following system of equations using Cramer’s rule: 

                  

                  

                

Solution: The given systems of linear equations are, 

                  

                  

                

Here,    |
       
      
    

|   5 (48 + 2) + 7 (– 36 + 3) + 1 (12 + 24) = 55 (≠0) 

 

               |
        
       
    

| = 11 (48 + 2) + 7 (– 90 + 7) + 1 (30 + 56) = 55 

 
 

               |
       
      
    

|                                                    

 

                    |
        
        
     

|                                                    
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Hence,            
  

 
 

  

  
  ,     ,         

  

 
 

   

  
   ,    ,         

  

 
 = 

   

  
   

 

►Example: Solve the following system of equations using Cramer’s rule: 

             

                       

                

Solution: The given systems of linear equations are, 

             

            

               

Let us write these equations in the form         

[
   
   
    

] [
 
 
 
]  [

 
  
 

] 

Now, D =|
   
   
    

|                       = 7+3-1= 9 ≠ 0 

As, D ≠ 0. So the given system of equations has a unique solution. 

Also, 

   |
   
    
    

|                                     

   |
   
    
   

|                                     

   |
   
    
    

|                                    

Hence,            
  

 
 

 

 
  ,     ,         

  

 
 

  

 
  ,    ,         

  

 
 = 
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►Exercise: Solve, by determinants, the following set of simultaneous equations 

5x – 6y + 4z = 15 

7x + 4y – 3z = 19  

2x + y + 6z = 46 

►Exercise: Solve the following system of equations using Cramer’s Rule: 

2x – 3y + 4z = –9  

– 3x + 4y + 2 = – 12 

 4x – 2y – 3z = –3  

►Exercise: The sum of three numbers is 6. If we multiply the third number by 2 

and add the first number to the result, we get 7. By adding second and third 

numbers to three times the first number we get 12. Use determinants to find the 

numbers. 

4.6 Matrix Inversion Method 

This method can be applied only when the coefficient matrix is a square matrix and non-

singular. Consider the matrix equation,                       ……(i)      

Where A is a non-singular square matrix and. Since A is non-singular, A
−1

 exists and have the 

properties A
−1

 A = AA
−1

 = I.  Pre-multiplying both sides of (i) by A
−1

, we get  A
−1

 ( AX ) = A
−1

B. 

That is, ( A
−1

 A) X = A
−1

B. Hence, we get X = A
−1

B. 

►Example : Solve the following system of equations, using matrix inversion method: 

                     

                              

                        

Solution: The matrix form of the system is        , where 

  [
   
    
     

]    [

  

  

  

],    [
 
  
 

]  

Now  det A = |
   
    
     

|                                       

So, A
-1

 exist. 
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Now,  A
-1  

=  
 

    
        

                    
 

  
[
                    

                     

                   
]

 

   
 

  
[
   
     
     

] 

Then applying           , we get  

X=[

  

  

  

]  
 

  
[
   
     
     

] [
 
  
 

] 

                                                                  
 

  
[
        
       
        

] 

                                                                   
 

  
[
  
  
   

]   [
 
 
  

]   

So, the solution is  x1 = 1 , x2 = 2 , x3 = -1. 

►Exercise: Solve the following equations by matrix inversion method: 

        

          

          

4.7 Matrices of a linear system:  

In solving systems of equations using elimination by addition, the coefficients of the 

variables and the constant terms played a central role. The process can be made more efficient for 

generalization and computer work by the introduction of a mathematical form called a matrix. A 

matrix is a rectangular array of numbers written within brackets. 

Matrix notation in a spreadsheet:  Matrices serve as shorthand for solving systems of linear 

equations. Associated with the system  

             

                                                                                 

are its coefficient matrix, constant matrix, and augmented matrix: 

[
   
  

] 

Coefficient matrix 

[
 
  

] 

Constant matrix 

[
     
     

] 

Augmented matrix 
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Note that the augmented matrix is just the coefficient matrix, augmented by the 

constant matrix. The vertical bar is included only as a visual aid to separate the 

coefficients from the constant terms. The augmented matrix contains all of the 

essential information about the linear system—everything but the names of the 

variables. 

For ease of generalization to the larger systems in later sections, we will change 

the notation for the variables in above system to a subscript form. That is, in place of 

x and y, we use    and   , respectively, and system is rewritten as- 

               

             

In general, associated with each linear system of the form 

               

               

The Augment matrix of the system is:  [
         

         
] 

This matrix contains the essential parts of above system of linear equations. Our objective is 

to learn how to manipulate augmented matrices in order to solve system, if a solution exists. The 

manipulative process is closely related to the elimination process discussed in 4.2. 

Now we consider more generalized system- 

Definition: The augmented matrix of the general linear system (1.1) is the table 

[
 
 
 
 
             

             

      
      

             ]
 
 
 
 

and the coefficient matrix of (1.1) is 

 

[
 
 
 
 
          

          

    
    

          ]
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Recall that two linear systems are said to be equivalent if they have the same solution set. 

We used the operations listed below to transform linear systems into equivalent systems: 

(1) Two equations are interchanged. 

(2) An equation is multiplied by a nonzero constant. 

(3) A constant multiple of one equation is added to another equation. 

Paralleling the earlier discussion, we say that two augmented matrices are row 

equivalent, denoted by the symbol ~, placed between the two matrices, if they are 

augmented matrices of equivalent systems of equations. How do we transform 

augmented matrices into row-equivalent matrices? 

4.8 Elementary row operations:  

In mathematics, an elementary matrix is a square matrix obtained from the application of a 

single elementary row operation to the identity matrix. The elementary matrices generate the 

general linear group GLn(F) when F is a field. Left multiplication (pre-multiplication) by an 

elementary matrix represents elementary row operations, while right multiplication (post-

multiplication) represents elementary column operations. 

Definition: There are three kinds of elementary row operations on matrices: 

(a) Adding a multiple of one row to another row; 

(b) Multiplying all entries of one row by a non-zero constant; 

(c) Inter changing two rows. 

There are three types of elementary matrices, which correspond to three types of row operations 

(respectively, column operations): 

Row switching 

A row within the matrix can be switched with another row. 

Row multiplication 

Each element in a row can be multiplied by a non-zero constant. It is also known 

as scaling a row.  

Row addition 

A row can be replaced by the sum of that row and a multiple of another row. 

Definition: Two linear systems in same variables are said to be equivalent if their solution sets are 

the same. A matrix A is said to be row equivalent to a matrix B, written A∼B, If there is a 

sequence of elementary row operations that changes A to B. 
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Theorem: If the augmented matrices of two linear systems are row equivalent, then the two 

systems have the same solution set. In other words, elementary row operations do not change 

solution set. 

4.9 Row echelon forms: 

Definition: A matrix is said to be in row echelon form if it satisfies the following two conditions: 

(i) All zero rows are gathered near the bottom. 

(ii) The first non zero entry of a row, called the leading entry of that row, is a head of 

the first non-zero entry of the next row. 

A matrix in row echelon form is said to be in reduced row echelon form if it satisfies two more 

conditions: 

(i) The leading entry of every non zero row is 1. 

(ii) Each leading entry 1 is the only non-zero entry in its column. 

A matrix in (reduced) row echelon form is called a (reduced) row echelon matrix. 

Note: Sometimes we call row echelon forms just as echelon forms and row echelon matrices as 

echelon matrices without mentioning the word ―row.‖ 

4.10 Row echelon form pattern: 

 The following are two typical row echelon matrices. 

 

 

 

 

where the circled  ● represent arbitrary non-zero numbers, and the stars * represent arbitrary     

numbers, including zero.  
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The following are two typical reduced row echelon matrices. 

 

Definition: If a matrix A is row equivalent to a row echelon matrix B, we say that A has 

the row echelon form B ; if B is further are deduced row echelon matrix, then we say 

that A has the reduced row echelon form B. 

4.11 Row reduction algorithm: 

Definition: A pivot position of a matrix A is a location of entries of A that corresponds to a 

leading entry in a row echelon form of A. A pivot column (pivot row) is a column (row) of 

A that contains a pivot position. 

Algorithm (Row Reduction Algorithm): 

(1) Begin with the left most non-zero column, which is a pivot column; the top entry is pivot 

position. 

(2) If the entry of the pivot position is zero, select a nonzero entry in the pivot column, 

interchange the pivot row and the row containing this nonzero entry. 

(3) If the pivot position is nonzero, use elementary row operations to reduce all entries below 

the pivot position to zero, (and the pivot position to 1 and entries above the pivot position to 

zero for reduced row echelon form). 

(4) Cover the pivot row and the rows above it; repeat (1)-(3) to the remaining sub-matrix. 

 

Theorem: Every matrix is row equivalent to one and only one reduced row echelon matrix. In 

other words, every matrix has a unique reduced row echelon form. 
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4.12 Solving linear system:  

►Example: Find all solutions for the linear system 

x1  + 2x2 − x3  = 1 

2x1 + x2 + 4x3 = 2 

   3x1   + 3x2 + 4x3 = 1 

Solution: Perform the row operations: 

►Exercise: Find all solutions for the linear system 

 
 
 
 
 
 
 

►Exercise: Find all solutions for the linear system 

2x1  + x2 − x3  = 1 

x1 + 3x2 + 4x3 = 2 

   7x1   + 3x2 + 4x3 = 1 

x1 -x2 +x3 -x4 = 2 

x1 -x2 +x3 +x4 = 0 

4x1 - 4x2 + 4x3  = 4 

−2x1 +2x2 −2x3 +x4 = −3 
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Theorem:  A linear system is consistent if and only if the row echelon form of its augmented 

matrix contains no row of the form 

[       ], where     

►Example: Solve the linear system whose augmented matrix is :  

  [

         
         
         
            

] 

Solution: Interchanging Row 1 and Row 3, we have 

[

         
         
         
            

] 

  
         

~ 

  
         

 

[

         
        
         
            

] 

  ↔   
~ 

[

         
         
        
            

] 

  
         

~ 
 

[

         
         
        
          

] 

  
  

 

 
   

~ 

[

         
         
        
          

] 
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~ 

 

[

         
         
        
        

] 

  
        

~ 

[

         
          
        
        

] 

Then the system is equivalent to, 

               

                           

                                     

This is same as,  

               

                                                                           

                                                                         

The unknowns   ,    and    are free variables. Set    = c1,  x4 = c2,  x5 = c3, where c1, c2, c3 are 
arbitrary. The general solutions of the system are given by- 

 
 

 

 

 

 

 

 

 

 

So, the system has infinitely many solutions. 

 

Definition: A variable in a consistent linear system is called free if its corresponding column in the 

Coefficient matrix is not a pivot column. 

 

Theorem: For any homogeneous system       , 

#{variables}= #{pivot positions of  }  +  #{free variables}
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4.13 Applications: 

Systems of linear equations are used in various real-life applications across different fields. 

Here are some examples: 

1. Business and Economics 

 Cost and Revenue Analysis: A company wants to determine the break-even point where 

total cost equals total revenue. 

Example:                          

Solving      helps determine the number of units needed to break even. 

 Investment and Budgeting: If a person invests in two stocks with different rates of return, 

they can use a system of equations to allocate their investment for maximum profit. 

2. Engineering and Science 

 Electrical Circuits (Kirchhoff’s Laws): In circuit analysis, multiple loops with resistors 

and voltage sources create simultaneous equations that engineers solve to find current 

values. 

 Mixture Problems in Chemistry: Determining the correct proportions of two solutions 

with different concentrations to get a desired mixture. Example: 

        (Total volume of solution)  

                     (Total concentration equation 

3. Agriculture and Farming 

 Crop Planning: Farmers may use equations to decide how much land to allocate for 

different crops while considering constraints like water supply and cost. 

 Animal Feed Optimization: Determining the right mix of grains and proteins for livestock 

based on nutritional requirements. 
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Exercise - 4 

1. Solve each of the following systems by graphing: 

              (a)              

                                    

(b               

            

(c)             

                  

2. Solve by substitution: 

              

             

3. Jasmine wants to use milk and orange juice to increase the amount of calcium and vitamin A 

in her daily diet. An ounce of milk contains 37 milligrams of calcium and 57 micrograms of 

vitamin A. An ounce of orange juice contains 5 milligrams of calcium and 65 micrograms of 

vitamin A. How many ounces of milk and orange juice should Jasmine drink each day to 

provide exactly 500 milligrams of calcium and 1,200 micrograms of vitamin A? 
 

4. Solve, by determinants, the following set of simultaneous equations 

               

                                                         

                                         

5. Solve the following system of equations using Cramer’s Rule: 

                

                 

                                                        

6. Solve the following equations by matrix inversion method: 

        

          

          

7. Find all solutions for the linear system 
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Chapter 5 

Eigen Values and Eigen Vectors 

 

 

5.1 Introduction 

 

              From an applications viewpoint, eigenvalue problems are probably the most important 

problems that arise in connection with matrix analysis. In this Chapter, we discuss the basic 

concepts of eigen values and eigen vectors. We shall see that eigenvalues and eigenvectors are 

associated with square matrices of order 𝑛 × 𝑛. If 𝑛 is small (2 or 3), determining eigenvalues 

is a fairly straightforward process (requiring the solution of a low order polynomial equation).  

In linear algebra, an eigenvector or characteristic vector is a vector that has 

its direction unchanged (or reversed) by a given linear transformation. More precisely, an 

eigenvector, 𝑣 of a linear transformation, T is scaled by a constant factor, λ, when the linear 

transformation is applied to it: 𝑇𝑣 =  𝜆𝑣 The corresponding eigenvalue, characteristic value, 

or characteristic root is the multiplying factor λ (possibly negative).  

 

              Geometrically, vectors are multi-dimensional quantities with magnitude and direction, 

often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon 

which it acts. Its eigenvectors are those vectors that are only stretched, with neither rotation 

nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or 

squished. If the eigenvalue is negative, the eigenvector's direction is reversed. 

  

            The eigenvectors and eigenvalues of a linear transformation serve to characterize it, and 

so they play important roles in all the areas where linear algebra is applied, 

from geology to quantum mechanics. In particular, it is often the case that a system is 

represented by a linear transformation whose outputs are fed as inputs to the same 

transformation (feedback). In such an application, the largest eigenvalue is of particular 

importance, because it governs the long-term behaviors of the system after many applications 

of the linear transformation, and the associated eigenvector is the steady state of the system. 

 

 

5.2 Definition 
 

           Consider the linear transformation of n-dimensional vectors defined by an 𝑛 ×
𝑛  matrix A as 

𝐴𝑣 = 𝑤, 
where 

[

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛

𝑎21 𝑎22 𝑎23 … 𝑎2𝑛

… … … … …
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 … 𝑎𝑛𝑛

]

[
 
 
 
 
𝑣1

𝑣2

𝑣3

…
𝑣𝑛]

 
 
 
 

=

[
 
 
 
 
𝑤1

𝑤2

𝑤3

…
𝑤𝑛]

 
 
 
 

. 

 

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
https://en.wikipedia.org/wiki/Direction_(geometry)
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Scalar_multiplication
https://en.wikipedia.org/wiki/Euclidean_vector
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Scaling_(geometry)
https://en.wikipedia.org/wiki/Shear_mapping
https://en.wikipedia.org/wiki/Geology
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Steady_state
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For each row,  

𝑤𝑖 = 𝐴𝑖1𝑣1 + 𝐴𝑖2𝑣2 + 𝐴𝑖3𝑣3 + ⋯+ 𝐴𝑖𝑛𝑣𝑛. 
 

If it occurs that v and w are scalar multiples, that is if  

 

                                                        𝐴𝑣 = 𝑤 =  𝜆𝑣                                                          (1) 

 

then 𝑣 is an eigenvector of the linear transformation A and the scale factor 𝜆 is 

the eigenvalue corresponding to that eigenvector. Equation (1) is the eigenvalue equation for 

the matrix A. 

 

Equation (1) can be stated equivalently as 

 

                                                   (𝐴 −  𝜆𝐼)𝑣 = 0,                                                              (2) 

 

where I is the 𝑛 × 𝑛 identity matrix and 0 is the zero vector.  

 

Equation (2) has a nonzero solution 𝑣 if and only if the determinant of the matrix (A − λI) is 

zero. Therefore, the eigenvalues of A are values of λ that satisfy the equation 

 

                                                              |A - 𝜆𝐼| = 0.                                                        (3) 

 

Using the Leibniz formula for determinants, the left-hand side of equation (3) is 

a polynomial function of the variable λ and the degree of this polynomial is n, the order of the 

matrix A. Its coefficients depend on the entries of A, except that its term of degree 𝑛 is always 

(−1)𝑛𝜆𝑛. This polynomial is called the characteristic polynomial of A. Equation (3) is called 

the characteristic equation or the secular equation of A. 

 

The fundamental theorem of algebra implies that the characteristic polynomial of an 𝑛 × 𝑛 

matrix A, being a polynomial of degree n, can be factored into the product of n linear terms, 

                                      

                                           det(𝐴 −  𝜆𝐼) = (𝜆1 − 𝜆)(𝜆2 − 𝜆)… (𝜆𝑛 − 𝜆).                             (4) 

 

where each 𝜆𝑖  may be real but in general is a complex number. The numbers λ1, λ2, ..., λn, which 

may not all have distinct values, are roots of the polynomial and are the eigenvalues of A. 

 

If A is any square matrix of order n, we can form the matrix A - 𝜆𝐼, where I is the nth order unit 

matrix. The determinant of this matrix equated to zero, 

 

 that is, |𝐴 − 𝜆𝐼 | =  |

𝑎11 − 𝜆 𝑎12 − 𝜆 … 𝑎1𝑛 − 𝜆
𝑎21 − 𝜆 𝑎22 − 𝜆 … 𝑎2𝑛 − 𝜆

… … … …
𝑎𝑛1 − 𝜆 𝑎𝑛2 − 𝜆 … 𝑎𝑛 − 𝜆

| = 0, 

 

 

is called the characteristic equation of A.  

 

The roots of this equation are called the eigenvalues or characteristic roots of the matrix A. 

 

 

https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Leibniz_formula_for_determinants
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Degree_of_a_polynomial
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Characteristic_polynomial
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Factorization
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If X = 

(

 
 

𝑥1

𝑥2

𝑥3

…
𝑥𝑛)

 
 

 and A = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛

), then corresponding to the eigen value 𝜆 we 

may write  

𝜆𝑋 = 𝐴𝑋 
 

and X is called the eigen vector corresponding to the eigen value 𝜆. 

 

As a brief example, which is described in more detail in the examples section later, consider 

the matrix 

 

𝐴 =  [
2 1
1 2

]. 

 

Taking the determinant of (A − λI), the characteristic polynomial of A is 

 

|𝐴 −  𝜆𝐼| = |
2 − 𝜆 1

1 2 − 𝜆
| = 3 − 4𝜆 + 𝜆2. 

 

Setting the characteristic polynomial equal to zero, we obtain the characteristic equation. It has 

roots at λ=1 and λ=3, which are the two eigenvalues of A. The eigenvectors corresponding to 

each eigenvalue can be found by solving for the components of 𝑣 in the equation 

 

(𝐴 −  𝜆𝐼)𝑣 = 0. 

 

From the above equation it is seen that the eigenvectors are any nonzero scalar multiples of 

 

𝑣𝜆=1 = (
1

−1
) and 𝑣𝜆=3 = (

1
1
). 

 

             If the entries of the matrix A are all real numbers, then the coefficients of the 

characteristic polynomial will also be real numbers, but the eigenvalues may still have nonzero 

imaginary parts. The entries of the corresponding eigenvectors therefore may also have nonzero 

imaginary parts. Similarly, the eigenvalues may be irrational numbers even if all the entries 

of A are rational numbers or even if they are all integers. However, if the entries of A are 

all algebraic numbers, which include the rational, the eigenvalues must also be algebraic 

numbers. 

 

            The non-real roots of a real polynomial with real coefficients can be grouped into pairs 

of complex conjugates, namely with the two members of each pair having imaginary parts that 

differ only in sign and the same real part. If the degree is odd, then by the intermediate value 

theorem at least one of the roots is real. Therefore, any real matrix with odd order has at least 

one real eigenvalue, whereas a real matrix with even order may not have any real eigenvalues. 

The eigenvectors associated with these complex eigenvalues are also complex and also appear 

in complex conjugate pairs. 

https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Algebraic_number
https://en.wikipedia.org/wiki/Complex_conjugate
https://en.wikipedia.org/wiki/Intermediate_value_theorem
https://en.wikipedia.org/wiki/Intermediate_value_theorem
https://en.wikipedia.org/wiki/Real_matrix
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5.3 Spectrum of a matrix 
 

                The spectrum of a matrix is the list of eigenvalues, repeated according to 

multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An 

important quantity associated with the spectrum is the maximum absolute value of any 

eigenvalue. This is known as the spectral radius of the matrix. 

 

5.4 Algebraic multiplicity 
 

                 Let λi be an eigenvalue of an 𝑛 × 𝑛 matrix A. The algebraic multiplicity μA(λi) of the 

eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest 

integer k such that (λ − λi)
k divides evenly that polynomial.  

                Suppose a matrix A has dimension n and d ≤ n distinct eigenvalues. Whereas 

equation (4) factors the characteristic polynomial of A into the product of n linear terms with 

some terms potentially repeating, the characteristic polynomial can also be written as the 

product of d terms each corresponding to a distinct eigenvalue and raised to the power of the 

algebraic multiplicity, 

 

det(𝐴 − 𝜆𝐼) = (𝜆1 − 𝜆)𝜇𝐴(𝜆1)(𝜆2 − 𝜆)𝜇𝐴(𝜆2) …(𝜆𝑛 − 𝜆)𝜇𝐴(𝜆𝑛). 
 

             If d = n then the right-hand side is the product of n linear terms and this is the same as 

equation(4). The size of each eigenvalue's algebraic multiplicity is related to the dimension n as 

 

1 ≤ 𝜇𝐴(𝜆𝑖) ≤ 𝑛 

and 𝜇𝐴 = ∑ 𝜇𝐴(𝜆𝑖) = 𝑛𝑑
𝑖=1 . 

 

            If 𝜇𝐴(𝜆𝑖) = 1, then 𝜆𝑖 is said to be a simple eigenvalue. If 𝜇𝐴(𝜆𝑖) equals the geometric 

multiplicity of 𝜆𝑖 , 𝛾𝐴(𝜆𝑖), defined in the next section, then 𝜆𝑖 is said to be a semisimple 

eigenvalue. 

 

 

5.5 Eigenspaces and geometric multiplicity 
 

Given a particular eigenvalue λ of the 𝑛 × 𝑛  matrix A, define the set E to be all vectors 𝑣 that  

satisfy equation (2) 

 

𝐸 = {𝑣: (𝐴 − 𝜆𝐼)𝑣 = 0}. 
 

On one hand, this set is precisely the kernel or null space of the matrix (A − λI).  

 

On the other hand, by definition, any nonzero vector that satisfies this condition is an 

eigenvector of A associated with λ. So, the set E is the union of the zero vector with the set of 

all eigenvectors of A associated with λ, and E equals the null space of (A − λI). E is called 

https://en.wikipedia.org/wiki/Spectrum_of_a_matrix
https://en.wikipedia.org/wiki/Spectral_radius#Matrices
https://en.wikipedia.org/wiki/Multiple_roots_of_a_polynomial
https://en.wikipedia.org/wiki/Polynomial_division
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#math_4
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#math_4
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Kernel_(linear_algebra)
https://en.wikipedia.org/wiki/Union_(set_theory)


E.5 
 

the eigenspace or characteristic space of A associated with λ. In general, λ is a complex 

number and the eigenvectors are complex n by 1 matrices. A property of the null space is that 

it is a linear subspace, so E is a linear subspace of ℂ𝑛. 

 

                Because the eigenspace E is a linear subspace, it is closed under addition. That is, if 

two vectors u and v belong to the set E, written u, v ∈ E, then  

                                       (u + v) ∈ E or equivalently A(u + v) = λ(u + v).  

              This can be checked using the distributive property of matrix multiplication. 

Similarly, because E is a linear subspace, it is closed under scalar multiplication. That is, 

if v ∈ E and α is a complex number, 

                                      (αv) ∈ E or equivalently A(αv) = λ(αv).  

             This can be checked by noting that multiplication of complex matrices by complex 

numbers is commutative. As long as u + v and αv are not zero, they are also eigenvectors 

of A associated with λ. 

 

             The dimension of the eigenspace E associated with λ, or equivalently the maximum 

number of linearly independent eigenvectors associated with λ, is referred to as the 

eigenvalue's geometric multiplicity 𝛾𝐴(𝜆). Because E is also the nullspace of (A − λI), the 

geometric multiplicity of λ is the dimension of the nullspace of (A − λI), also called 

the nullity of (A − λI), which relates to the dimension and rank of (A − λI) as 

 

𝛾𝐴(𝜆) = 𝑛 − 𝑟𝑎𝑛𝑘(𝐴 −  𝜆𝐼). 
 

             Because of the definition of eigenvalues and eigenvectors, an eigenvalue's geometric 

multiplicity must be at least one, that is, each eigenvalue has at least one associated eigenvector. 

Furthermore, an eigenvalue's geometric multiplicity cannot exceed its algebraic multiplicity.  

 

5.6 Properties of Eigenvalues 
 

Let  A be an arbitrary 𝑛 × 𝑛  matrix of complex numbers with eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛. Each 

eigenvalue appears  𝜇𝐴(𝜆𝑖) times in this list, where 𝜇𝐴(𝜆𝑖)  is the eigenvalue's algebraic 

multiplicity. The following are properties of this matrix and its eigenvalues: 

1. The trace of A, defined as the sum of its diagonal elements, is also the sum of all 

eigenvalues.  

2. The determinant of A is the product of all its eigenvalues.  

3. The eigenvalues of the kth power of A; i.e., the eigenvalues of 𝐴𝑘 , for any positive 

integer k, are  𝜆1
𝑘 , 𝜆2

𝑘, … , 𝜆𝑛
𝑘. 

https://en.wikipedia.org/wiki/Linear_subspace
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Distributive_property
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Determinant
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The matrix A is invertible if and only if every eigenvalue is nonzero. 

1. If A is invertible, then the eigenvalues 𝐴−1 of  are  
1

𝜆1
, 

1

𝜆2
,  …, 

1

𝜆𝑛
,  and each eigenvalue's 

geometric multiplicity coincides. Moreover, since the characteristic polynomial of the 

inverse is the reciprocal polynomial of the original, the eigenvalues share the same 

algebraic multiplicity. 

2. If A is equal to its conjugate transpose 𝐴∗ , or equivalently if  is Hermitian, then every 

eigenvalue is real. The same is true of any symmetric real matrix. 

3. If A is not only Hermitian but also positive-definite, positive-semidefinite, negative-

definite, or negative-semidefinite, then every eigenvalue is positive, non-negative, 

negative, or non-positive, respectively. 

4. If A is unitary, every eigenvalue has absolute value ﷧|𝜆𝑖| = 1. 
5. If A is a  𝑛 × 𝑛 matrix and  are its eigenvalues, then the eigenvalues of 

matrix I+A (where I is the identity matrix) are  {𝜆1 + 1, 𝜆2 + 1,… , 𝜆𝑘 + 1}. Moreover, 

if , 𝛼 ∈ ℂ the eigenvalues of 𝛼𝐼 + 𝐴 are {𝜆1 + 𝛼, 𝜆2 + 𝛼,… , 𝜆𝑘 + 𝛼}. . More generally, 

for a polynomial P the eigenvalues of matrix P(A) are {P(𝜆1), P(𝜆2), … , P(𝜆𝑘)}. 
6. The Eigen vectors correspond to distinct Eigen values of a matrix are linearly 

independent. 

7. The Eigen values of a symmetric matrix the Eigen values are either zero (or) purely 

imaginary. 

8. The Eigen values of an orthogonal matrix are of unit modulus i. e. |λ| = 1. 

 

 

5.7 Left and right eigenvectors 
 

 

Many disciplines traditionally represent vectors as matrices with a single column rather than 

as matrices with a single row. For that reason, the word "eigenvector" in the context of matrices 

almost always refers to a right eigenvector, namely a column vector that right multiplies the 

𝑛 × 𝑛  matrix A in the defining equation, equation (1), 

𝐴𝑣 =  𝜆𝑣. 

The eigenvalue and eigenvector problem can also be defined for row vectors that left multiply 

matrix A. In this formulation, the defining equation is 

𝑢𝐴 = 𝜅𝑢, 

where 𝑘 is a scalar and u is a  1 × 𝑛 matrix. Any row vector u satisfying this equation is called 

a left eigenvector of A and 𝑘 is its associated eigenvalue. Taking the transpose of this 

equation, 

𝐴𝑇𝑢𝑇 = 𝑘𝑢𝑇. 

Comparing this equation to equation (1), it follows immediately that a left eigenvector of A is 

the same as the transpose of a right eigenvector of 𝐴𝑇, with the same eigenvalue. Furthermore, 

since the characteristic polynomial of 𝐴𝑇 is the same as the characteristic polynomial of A, the 

left and right eigenvectors of A are associated with the same eigenvalues. 

 

https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Reciprocal_polynomial
https://en.wikipedia.org/wiki/Conjugate_transpose
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Unitary_matrix
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5.8 Cayley-Hamilton Theorem 
 

           In Linear Algebra, the Cayley–Hamilton theorem (named after the 

mathematicians Arthur Cayley and William Rowan Hamilton) states that every square 

matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies 

its own characteristic equation. 

           The characteristic polynomial of an n × n matrix A is defined as 

𝑝𝐴(𝜆) = det(𝜆𝐼𝑛 − 𝐴), 

           where det is the determinant operation, λ is a variable scalar element of the base ring 

and In is the n × n identity matrix. Since each entry of the matrix (𝜆𝐼𝑛 − 𝐴) is either constant 

or linear in λ. So, it can be written as 

𝑝𝐴(𝜆) = 𝜆𝑛 + 𝑐𝑛−1𝜆
𝑛−1 + ⋯+ 𝑐1𝜆 + 𝑐0. 

          By replacing the scalar variable λ with the matrix A, one can define an analogous matrix 

polynomial expression, 

𝑝𝐴(𝐴) = 𝐴𝑛 + 𝑐𝑛−1𝐴
𝑛−1 + ⋯+ 𝑐1𝐴 + 𝑐0. 

         Here, A is the given matrix—not a variable, unlike 𝜆—so 𝑝𝐴(𝐴) is a constant rather than 

a function.) The Cayley–Hamilton theorem states that this polynomial expression is equal to 

the zero matrix, which is to say that  

𝑝𝐴(𝐴) = 0, 

         that is, the characteristic polynomial 𝑝𝐴 is an annihilating polynomial for A. One use for 

the Cayley–Hamilton theorem is that it allows An to be expressed as a linear combination of 

the lower matrix powers of A: 

𝐴𝑛 = −𝑐𝑛−1𝐴
𝑛−1 − ⋯− 𝑐1𝐴 − 𝑐0. 

         When the ring is a field, the Cayley–Hamilton theorem is equivalent to the statement that 

the minimal polynomial of a square matrix divides its characteristic polynomial. 

 

 

5.9 Illustrative examples: 

.  

Example 1: Find the eigen values and eigen vectors of the matrix (
𝟓 𝟒
𝟏 𝟐

). 

Solution: Given A = (
5 4
1 2

) (say) 

The characteristic equation corresponding to the eigen value 𝜆 is given by |𝐴 − 𝜆𝐼 | = 0 

 

that is, |
5 4
1 2

 | − 𝜆 |
1 0
0 1

 | = 0 ⇒ |
5 4
1 2

 | − |
𝜆 0
0 𝜆

 | = 0 

 

⇒ |
5 − 𝜆 4

1 2 − 𝜆
 | = 0 

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Arthur_Cayley
https://en.wikipedia.org/wiki/William_Rowan_Hamilton
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Commutative_ring
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Integer#Algebraic_properties
https://en.wikipedia.org/wiki/Characteristic_polynomial#Characteristic_equation
https://en.wikipedia.org/wiki/Characteristic_polynomial
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Identity_matrix
https://en.wikipedia.org/wiki/Matrix_polynomial
https://en.wikipedia.org/wiki/Matrix_polynomial
https://en.wikipedia.org/wiki/Zero_matrix
https://en.wikipedia.org/wiki/Annihilating_polynomial
https://en.wikipedia.org/wiki/Theorem
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Minimal_polynomial_(linear_algebra)
https://en.wikipedia.org/wiki/Polynomial_division
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or, (5 − 𝜆)(2 − 𝜆) − 4 = 0 

                                                     or, 𝜆2 − 7𝜆 + 6 = 0 

                                                     or, 𝜆2 − 6𝜆 − 𝜆 + 6 = 0 

                                                     or, (𝜆 − 6)(𝜆 − 2) = 0,  

                                                     or, 𝜆 = 6 and 1. 
 

Thus, the eigen values are 6 and 1. 

 

Let X = (
𝑥
𝑦) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋 

Corresponding to 𝜆 = 6,  

                                                           (
5 4
1 2

) (
𝑥
𝑦) = 6 (

𝑥
𝑦) 

 

⇒ (
5𝑥 + 4𝑦
𝑥 + 2𝑦

) = (
6𝑥
6𝑦

) 

  

                                                         ⇒ 5x + 4y = 6x and x + 2y = 6y 

 

                                                         ⇒ -x + 4y = 0 and x – 4y = 0 

 

Let y = k, k is any real number. 

Then x = 4k. 

Thus, X = (
4𝑘
𝑘

) = 𝑘 (
4
1
). 

Thus, (
4
1
) is the eigen vector corresponding to the eigen value 6. 

Corresponding to 𝜆 = 1,  

                                                          (
5 4
1 2

) (
𝑥
𝑦) = 1 (

𝑥
𝑦) 

 

⇒ (
5𝑥 + 4𝑦
𝑥 + 2𝑦

) = (
𝑥
𝑦) 

 

                                                         ⇒ 5x + 4y = x and x + 2y = y 

 

                                                         ⇒ 4x + 4y = 0 and x + y = 0 

Let y = k, k is any real number. 

Then x = -k. 

Thus, X = (
−𝑘
𝑘

) = 𝑘 (
−1
1

). 

Thus, (
−1
1

) is the eigen vector corresponding to the eigen value 1. 

 

Example 2: Find the eigenvalues and eigenvectors of the matrix (
𝟏 −𝟐

−𝟔 𝟎
). 

 

Solution: Given A = (
1 −2

−6 0
) (say) 

The characteristic equation corresponding to the eigen value 𝜆 is given by |𝐴 − 𝜆𝐼 | = 0 
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That is, |
1 −2

−6 0
 | − 𝜆 |

1 0
0 1

 | = 0 ⇒ |
1 −2

−6 0
 | − |

𝜆 0
0 𝜆

 | = 0 

 

⇒ |
1 − 𝜆 −2
−6 0 − 𝜆

 | = 0 

 

                                                        or, (1 − 𝜆)(−𝜆) − 12 = 0 

 

                                                        or, 𝜆2 − 𝜆 − 12 = 0 

 

                                                        or, (𝜆 − 4)(𝜆 + 3) = 0,  

 

                                                        or, 𝜆 = 4 and − 3. 
Thus, the eigen values are 4 and -3. 

 

Let X = (
𝑥
𝑦) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋 

 

Corresponding to 𝜆 = 4,  

                                                            (
1 −2

−6 0
) (

𝑥
𝑦) = 4 (

𝑥
𝑦) 

 

⇒ (
𝑥 − 2𝑦

−6𝑥 + 0
) = (

4𝑥
4𝑦

) 

 

                                                        ⇒ x - 2y = 4x and -6x = 4y 

 

                                                        ⇒ 3x +2y = 0 and 3x + 2y = 0 

Let x = k, k is any real number.  

 

Then y = −
3𝑘

2
. 

Thus, X = (
𝑘

−
3𝑘

2

) = 𝑘 (
1

−
3

2

). 

Thus, (
1

−
3

2

) is the eigen vector corresponding to the eigen value 4. 

 

Corresponding to 𝜆 = −3,  

                                                         (
1 −2

−6 0
) (

𝑥
𝑦) = −3(

𝑥
𝑦) 

 

⇒ (
𝑥 − 2𝑦

−6𝑥 + 0
) = (

−3𝑥
−3𝑦

) 

 

                                                       ⇒ x - 2y = -3x and -6x = -3y 

 

                                                       ⇒ 2x = y and 2x = y 

Let x = k, k is any real number.  

 

Then y =2k . 
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Thus, X = (
𝑘
2𝑘

) = 𝑘 (
1
2
). 

Thus, (
1
2
) is the eigen vector corresponding to the eigen value -3. 

 

 

Example 3: Find the eigen values and eigen vectors of the matrix 

 

                                                                            (
𝟑 𝟏 𝟒
𝟎 𝟐 𝟔
𝟎 𝟎 𝟓

). 

 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

|𝐴 − 𝜆𝐼 | = 0 
 

⇒ |
3 1 4
0 2 6
0 0 5

| − 𝜆 |
1 0 0
0 1 0
0 0 1

| = 0 

                                                      ⇒ |
3 − 𝜆 1 4

0 2 − 𝜆 6
0 0 5 − 𝜆

| = 0   

                                                       ⇒ (3 − 𝜆)(2 − 𝜆)( 5 − 𝜆) = 0 
Thus, the eigen values are 2, 3 and 5. 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

Now, corresponding to the eigen value 2 we have, 

 

(
3 1 4
0 2 6
0 0 5

)(
𝑥
𝑦
𝑧
) =2(

𝑥
𝑦
𝑧
) 

 

⇒ (
3𝑥 + 𝑦 + 4𝑧

2𝑦 + 6𝑧
5𝑧

)=(
2𝑥
2𝑦
2𝑧

) 

 

⇒ 3𝑥 + 𝑦 + 4𝑧 = 2𝑥 
 

2𝑦 + 6𝑧 = 2𝑦 and 5𝑧 = 2𝑧 

 

⇒ x + y + 4z = 0 

6z = 0 

3z = 0 

 

                                                              ⇒ z  = 0.   

Let x = k, k is any real number. Then y = -1 

Thus, X = (
𝑘

−𝑘
0

) = 𝑘 (
1

−1
0

). 



E.11 
 

Thus the  eigen vector corresponding to the eigen value  2 is (
1

−1
0

). And (
1

−1
0

) 

In a similar way, the eigen vectors corresponding to the eigen values 3 and 5 are  (
1
0
0
) and  

(
3
2
1
) respectively.  

Example 4: Find the eigen values and eigen vectors of the matrix (
𝟏 𝟏 𝟑
𝟏 𝟓 𝟏
𝟑 𝟏 𝟏

). 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

 

|𝐴 − 𝜆𝐼 | = 0 
 

⇒ |
1 1 3
1 5 1
3 1 1

| − 𝜆 |
1 0 0
0 1 0
0 0 1

| = 0 

 

                                                ⇒ |
1 − 𝜆 1 3

1 5 − 𝜆 1
3 1 1 − 𝜆

| = 0   

 

                                               ⇒ (𝜆 − 3)(𝜆 − 6)( 𝜆 + 2) = 0 
 

Thus, the eigen values are 3, 6 and -2. 

 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

Now, corresponding to the eigen value -2 we have, 

 

(
1 1 3
1 5 1
3 1 1

)(
𝑥
𝑦
𝑧
) =-2(

𝑥
𝑦
𝑧
) 

 

⇒ (

𝑥 + 𝑦 + 3𝑧
𝑥 + 5𝑦 + 𝑧
3𝑥 + 𝑦 + 𝑧

)=(−
−2𝑥
2𝑦
−2𝑧

) 

 

⇒ 𝑥 + 𝑦 + 3𝑧 = −2𝑥 

𝑥 + 5𝑦 + 𝑧 = −2𝑦  

and 3𝑥 + 𝑦 + 𝑧 = −2𝑧 

 

Solving, 𝑦 = 0. 
 

Let x = k, k is any real number. Then z = -k. 
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Thus, X = (
𝑘
0

−𝑘
) = 𝑘 (

1
0

−1
). 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

Now, corresponding to the eigen value 3 we have, 

 

(
1 1 3
1 5 1
3 1 1

)(
𝑥
𝑦
𝑧
) =3(

𝑥
𝑦
𝑧
) 

 

⇒ (

𝑥 + 𝑦 + 3𝑧
𝑥 + 5𝑦 + 𝑧
3𝑥 + 𝑦 + 𝑧

)=(
3𝑥
3𝑦
3𝑧

) 

 

⇒ 𝑥 + 𝑦 + 3𝑧 = 3𝑥 

𝑥 + 5𝑦 + 𝑧 = 3𝑦  

and 3𝑥 + 𝑦 + 𝑧 = 3𝑧 

 

Solving, 𝑥 =  −𝑦 = 𝑧. 
 

Let x = k, k is any real number. Then y = -k and z = k 

 

Thus, X = (
𝑘

−𝑘
𝑘

) = 𝑘 (
1

−1
1

). 

 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

Now, corresponding to the eigen value 6 we have, 

 

(
1 1 3
1 5 1
3 1 1

)(
𝑥
𝑦
𝑧
) =6(

𝑥
𝑦
𝑧
) 

 

⇒ (

𝑥 + 𝑦 + 3𝑧
𝑥 + 5𝑦 + 𝑧
3𝑥 + 𝑦 + 𝑧

)=(
6𝑥
6𝑦
6𝑧

) 

 

⇒ 𝑥 + 𝑦 + 3𝑧 = 6𝑥 

𝑥 + 5𝑦 + 𝑧 = 6𝑦  

and 3𝑥 + 𝑦 + 𝑧 = 6𝑧 

 

Solving, 𝑥 = 𝑧 =
𝑦

2
. 

 

Let y = k, k is any real number. Then x = z = 2k. 
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Thus, X = (
2𝑘
𝑘
2𝑘

) = 𝑘 (
2
1
2
). 

 

Example 5: Find the eigen values and eigen vectors of the matrix (
𝟓 −𝟏𝟎 −𝟓
𝟐 𝟏𝟒 𝟐

−𝟒 −𝟖 𝟔
). 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

 

|𝐴 − 𝜆𝐼 | = 0 

⇒ |
5 −10 −5
2 14 2

−4 −8 6
| − 𝜆 |

1 0 0
0 1 0
0 0 1

| = 0 

 

                                                      ⇒ |
5 − 𝜆 −10 −5

2 14 − 𝜆 2
−4 −8 6 − 𝜆

| = 0   

 

                                                       ⇒ (𝜆 − 5)(𝜆 − 10)2 = 0 
 

Thus, the eigen values are 5, 10 and 10. 

 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

 

Now, corresponding to the eigen value 5 we have, 

 

(
5 −10 −5
2 14 2

−4 −8 6
)(

𝑥
𝑦
𝑧
) =5(

𝑥
𝑦
𝑧
). 

 

⇒ (
5𝑥 − 10𝑦 − 5𝑧
2𝑥 + 14𝑦 + 2𝑧
−4𝑥 − 8𝑦 + 6𝑧

)=(
5𝑥
5𝑦
5𝑧

) 

 

⇒ −10𝑦 − 5𝑧 = 0 

2𝑥 + 9𝑦 + 2𝑧 = 0  

and −4𝑥 − 8𝑦 + 𝑧 = 0 

Solving, we get the eigenvector corresponding to the eigenvalue 5 as (
5

−2
4

). 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

 

Now, corresponding to the eigen value 10 we have, 
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(
5 −10 −5
2 14 2

−4 −8 6
)(

𝑥
𝑦
𝑧
) =10(

𝑥
𝑦
𝑧
) 

 

⇒ (
5𝑥 − 10𝑦 − 5𝑧
2𝑥 + 14𝑦 + 2𝑧
−4𝑥 − 8𝑦 + 6𝑧

)=(
10𝑥
10𝑦
10𝑧

) 

 

⇒ 5𝑥 − 10𝑦 − 5𝑧 = 10𝑥 

2𝑥 + 14𝑦 + 2𝑧 = 10𝑦  

and −4𝑥 − 8𝑦 + 6𝑧 = 10𝑧 

⇒ 𝑥 + 2𝑦 + 𝑧 = 0. 
 

So, the eigenvectors are of the form 

 

 

(
2𝑠 − 𝑡

𝑠
𝑡

) = 𝑠 (
2
1
0
) + 𝑡 (

−1
0
1

). 

 

Thus, (
2
1
0
) and (

−1
0
1

) are two eigenvectors corresponding to the eigenvalue 10. 

 

 

Example 6: Find the eigen values and eigen vectors of the matrix 

                                                                           (
𝟐 𝟐 𝟐
𝟐 𝟐 𝟐
𝟐 𝟐 𝟐

). 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

 

|𝐴 − 𝜆𝐼 | = 0 
 

 

⇒ |
2 2 2
2 2 2
2 2 2

| − 𝜆 |
1 0 0
0 1 0
0 0 1

| = 0 

 

 

                                                      ⇒ |
2 − 𝜆 2 2

2 2 − 𝜆 2
2 2 2 − 𝜆

| = 0   

 

                                                       ⇒ (𝜆 − 5)(𝜆 − 10)2 = 0 

 

Thus, the eigen values are 0, 0 and 6. 

 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 
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Now, corresponding to the eigen value 0 we have, 

 

 

(
2 2 2
2 2 2
2 2 2

)(
𝑥
𝑦
𝑧
) =0(

𝑥
𝑦
𝑧
) 

 

⇒ 𝑥 + 𝑦 + 𝑧 = 0. 
 

Let 𝑦 =  𝑘1 and 𝑧 =  𝑘2, then 𝑥 = −(𝑘1 + 𝑘2 ). 

 

Then X = (

−(𝑘1 + 𝑘2 )
𝑘1

𝑘2

) = 𝑘1 (
−1
1
0

) + 𝑘2 (
−1
0
1

). 

Thus, two eigenvectors corresponding to the eigenvalue 0 are (
−1
1
0

) and (
−1
0
1

). 

Now, corresponding to the eigen value 6 we have, 

 

 

 

(
2 2 2
2 2 2
2 2 2

)(
𝑥
𝑦
𝑧
) =6(

𝑥
𝑦
𝑧
) 

 

⇒ −2𝑥 + 𝑦 + 𝑧 = 0 

𝑥 − 2𝑦 + 𝑧 = 0 

𝑥 + 𝑦 − 2𝑧 = 0. 

 

Let 𝑦 = 𝑧 =  𝑘. Then 𝑥 = 𝑘, that is, 𝑥 = 𝑦 = 𝑧 = 𝑘. 

 

Then X = (
𝑘
𝑘
𝑘
) = 𝑘 (

1
1
1
) 

Thus, two eigenvectors corresponding to the eigenvalue 6 is (
1
1
1
). 

 

 

Example 7: Find the eigen values and eigen vectors of the matrix 

                                                                           (
𝟏 𝟎 𝟎
𝟎 𝟐 𝟎
𝟎 𝟎 𝟑

). 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

 

|𝐴 − 𝜆𝐼 | = 0 
 

 

⇒ |
1 0 0
0 2 0
0 0 3

| − 𝜆 |
1 0 0
0 1 0
0 0 1

| = 0 
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                                                      ⇒ |
1 − 𝜆 0 0

0 2 − 𝜆 0
0 0 3 − 𝜆

| = 0   

 

                                                       ⇒ (1 − 𝜆)(2 − 𝜆)(3 − 𝜆) = 0 
 

Thus, the eigen values are 1, 2 and 3. 

 

Let X = (
𝑥
𝑦
𝑧
) be an eigen vector corresponding to the eigenvalue 𝜆, such that 

AX = 𝜆𝑋. 

 

Now, corresponding to the eigen value 1 we have, 

 

(
1 0 0
0 2 0
0 0 3

)(
𝑥
𝑦
𝑧
) =1(

𝑥
𝑦
𝑧
) 

 

⇒ 𝑥 = 𝑥, 2𝑦 = 𝑦 and 3𝑧 = 𝑧. 
 

Let 𝑥 =  𝑘, where k is any non-zero real number. 

 

We get, 𝑦 = 0 and 𝑧 = 0. 

 

Then X = (
𝑘
0
0
) = 𝑘 (

1
0
0
). 

 

Therefore, the eigenvector corresponding to the eigenvalue 1 is (
1
0
0
). 

Now, corresponding to the eigen value 2 we have, 

 

(
1 0 0
0 2 0
0 0 3

)(
𝑥
𝑦
𝑧
) =2(

𝑥
𝑦
𝑧
) 

 

⇒ 𝑥 = 2𝑥, 2𝑦 = 2𝑦 and 3𝑧 = 2𝑧. 
 

Let 𝑦 =  𝑘, where k is any non-zero real number. 

 

We get, 𝑥 = 0 and 𝑧 = 0. 

 

Then X = (
0
𝑘
0
) = 𝑘 (

0
1
0
). 
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Therefore, the eigenvector corresponding to the eigenvalue 2 is (
0
1
0
). 

 

Now, corresponding to the eigen value 3 we have, 

 

 

(
1 0 0
0 2 0
0 0 3

)(
𝑥
𝑦
𝑧
) =3(

𝑥
𝑦
𝑧
) 

 

⇒ 𝑥 = 3𝑥, 2𝑦 = 3𝑦 and 3𝑧 = 3𝑧. 
 

Let 𝑧 =  𝑘, where k is any non-zero real number. 

 

We get, 𝑥 = 0 and 𝑦 = 0. 

 

Then X = (
0
0
0
) = 𝑘 (

0
0
1
). 

 

Therefore, the eigenvector corresponding to the eigenvalue 3 is (
0
0
1
). 

 

Example 8: Find the eigen values and eigen vectors of the matrix 

 

 

                                                                           (
𝟏 𝟐 𝟒
𝟎 𝟒 𝟕
𝟎 𝟎 𝟔

). 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

 

|𝐴 − 𝜆𝐼 | = 0 
 

⇒ |
1 2 4
0 4 7
0 0 6

| − 𝜆 |
1 0 0
0 1 0
0 0 1

| = 0 

 

 

                                                      ⇒ |
1 − 𝜆 2 4

0 4 − 𝜆 7
0 0 6 − 𝜆

| = 0   

 

                                                       ⇒ (1 − 𝜆)(4 − 𝜆)(6 − 𝜆) = 0 
 

Thus, the eigen values are 1, 4 and 6. 

 
Now, corresponding to the eigen value 1 we have, 
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(
1 2 4
0 4 7
0 0 6

)(
𝑥
𝑦
𝑧
) =1(

𝑥
𝑦
𝑧
) 

 

⇒ 𝑦 + 2𝑧 = 0 

     3𝑦 + 7𝑧 = 0 

5𝑧 = 0 
 

Thus, we get 𝑧 =  0. 

 

Let, 𝑥 = 𝑘 and 𝑦 = −
5𝑘

2
. 

 

Then X = (

𝑘

−
5𝑘

2

0

) = 𝑘 (

1

−
5

2

0

) = 𝑘 (
2

−5
0

). 

Therefore, the eigenvector corresponding to the eigenvalue 1 is (
2

−5
0

). 

 

Now, corresponding to the eigen value 4 we have, 

 

 

(
1 2 4
0 4 7
0 0 6

)(
𝑥
𝑦
𝑧
) =4(

𝑥
𝑦
𝑧
) 

 

⇒ −3𝑥 + 2𝑦 + 4𝑧 = 0 

     7𝑧 = 0 

     2𝑧 = 0 

Thus, 𝑧 = 0. 

Let, 𝑥 = 𝑘 and thus, 𝑦 =  
3

2
𝑘. 

 

 

Then X = (

𝑘
3𝑘

2

0

) = 𝑘 (

1
3

2

0

) = 𝑘 (
2
3
0
). 

 

 

Therefore, the eigenvector corresponding to the eigenvalue 4 is (
2
3
0
). 

 

Now, corresponding to the eigen value 6 we have, 
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(
1 2 4
0 4 7
0 0 6

)(
𝑥
𝑦
𝑧
) =6(

𝑥
𝑦
𝑧
) 

 

⇒ −5𝑥 + 2𝑦 + 4𝑧 = 0 

     −2𝑦 + 7𝑧 = 0 

     𝑧 = 0 

Thus, 𝑧 = 𝑘. 

Let, 𝑥 =
11𝑘

5
 and thus, 𝑦 =  

7𝑘

2
. 

 

 

Then X = (

11𝑘

5
7𝑘

2

0

) = 𝑘 (

11

5
7

2

0

) = 𝑘 (
22
35
0

). 

 

Therefore, the eigenvector corresponding to the eigenvalue 4 is (
22
35
0

). 

 

Example 9: Verify Cayley-Hamilton theorem for the matrix A = (
𝟏 𝟒
𝟐 𝟑

) and find its 

inverse. Also express 𝑨𝟓 − 𝟒𝑨𝟒 − 𝟕𝑨𝟑 + 𝟏𝟏𝑨𝟐-A-10 I as a linear polynomial in A.  

 

 

 

Solution: The characteristic equation corresponding to the eigen value 𝜆 is given by 

|𝐴 − 𝜆𝐼 | = 0 

That is, |
1 4
2 3

 | − 𝜆 |
1 0
0 1

 | = 0 ⇒ |
1 4
2 3

 | − |
𝜆 0
0 𝜆

 | = 0 

⇒ |
1 − 𝜆 4

2 3 − 𝜆
 | = 0 

 

                                                        ⇒(1 − 𝜆)( 3 − 𝜆) − 8 = 0 

 

                                                        ⇒ 𝜆2 − 4𝜆 − 5 = 0 
 

By Cayley-Hamilton theorem, A must satisfy its characteristic equation, so that we have to 

verify that if 

 

                                           𝐴2 − 4𝐴 − 5𝐼 = 𝑂.                    ………………..(1) 

 

Now, (
1 4
2 3

) (
1 4
2 3

) − 4 (
1 4
2 3

) −5(
1 0
0 1

) 

 

= (
9 16
8 17

) − (
4 16
8 12

) − (
5 0
0 5

)=(
0 0
0 0

) = O. 

 

Thus, the theorem is verified.  

 

Now, multiplying equation (1) by 𝐴−1, we get 
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𝐴−1(𝐴2 − 4𝐴 − 5𝐼) = 𝑂 
 

                                                       ⇒ 𝐴 − 4𝐼 − 5𝐴−1 = 0 
  

                                                       ⇒ 𝐴−1 =
1

5
(𝐴 − 4𝐼)     

 

                                                                    = 
1

5
{(

1 4
2 3

) − 4 (
1 0
0 1

)} 

 

                                                                    = 
1

5
(
−3 4
2 −1

) 

 

Now dividing the polynomial 𝜆5 − 4𝜆4 − 7𝜆3 + 11𝜆2-A-10 I by the polynomial 𝜆2 − 4𝜆 − 5, 

we obtain 

 

    𝜆5 − 4𝜆4 − 7𝜆3 + 11𝜆2-A-10 I 

 

= (𝜆2 − 4𝜆 − 5)(𝜆3 − 2𝜆 + 3) + 𝜆 + 5 

 

 = 𝜆 + 5 

 

Hence, 𝐴5 − 4𝐴4 − 7𝐴3 + 11𝐴2-A-10 I= A + 5I, is a linear polynomial in A. 

 

Example 10: Find the characteristic equation of the matrix A = (
𝟏 𝟏 𝟑
𝟏 𝟑 −𝟑

−𝟐 −𝟒 −𝟒
) and 

hence find its inverse.  

 

Solution: The characteristic equation is |
1 − 𝜆 1 3

1 3 − 𝜆 −3
−2 −4 −4 − 𝜆

| = 0 

 

or, (1 − 𝜆){(3 − 𝜆)(−4 − 𝜆) − 12} − 1{(−4 − 𝜆)} + 3{−4 + 2(3 − 𝜆)} = 0 
 

or, 𝜆3 − 20𝜆 + 8 = 0 
 

Thus, by Cayley-Hamilton theorem, 𝐴3 − 20𝐴 + 8𝐼 = 𝑂. 

 

Multiplying both sides by 𝐴−1,          𝐴−1𝐴3 − 20𝐴−1𝐴 + 8𝐴−1𝐼 = 𝑂 

 

                                                       ⇒ 𝐴2 − 20𝐼 + 8𝐴−1 = 𝑂 

                                                       ⇒ 𝐴−1 =
5

2
𝐼 −

1

8
𝐴2 

 

                                                                      = 
5

2
(
1 0 0
0 1 0
0 0 1

) −
1

8
(
−4 −8 −12
10 22 6
2 2 22

) 

 

                                                                      = (

3 1 3/2
−5/4 −1/4 −3/4
−1/4 −1/4 −1/4

). 
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5.10 Matrix Diagonalization:  

 

       Matrix diagonalization is the process of reducing a square matrix into its diagonal form 

using a similarity transformation. This process is useful because diagonal matrices are easier 

to work with, especially when raising them into integer powers. 

      Not all matrices are diagonalizable. A matrix is diagonalizable if it has no defective 

eigenvalues, meaning each eigenvalue’s geometric multiplicity is equal to its algebraic 

multiplicity.  

Matrix similarity transformation: 

Let A and B be two matrices of order n. Matrix B is considered similar to A if there exists an 

invertible matrix P such that: 

                                                             𝐁 =  𝐏−𝟏𝐀 𝐏 

This transformation is known as Matrix similarity transformation. Similar matrices have the 

same rank, trace, determinant, and eigenvalues.  

 

Diagonalization of a matrix:  

 

Diagonalization of a matrix refers to the process of transforming any matrix A into its diagonal 

form D. According to the similarity transformation, if A is diagonalizable, then  

                                                             𝐃 = 𝐏−𝟏𝐀 𝐏 

Where D is a diagonal matrix and P is modal matrix.  

 

A modal matrix is an 𝑛 × 𝑛 matrix consisting of the eigenvectors of A. It is essential in the 

process of diagonalization and similarity transformation. 

 

Conditions for diagonalization:  

 

A matrix is diagonalizable if it has 𝒏 linearly independent eigenvectors, or if the sum of 

the geometric multiplicities of its eigenvalues is 𝒏. 

 

Example 1: Diagonalize the matrix (
𝟏 𝟎 −𝟏
𝟏 𝟐 𝟏
𝟐 𝟐 𝟑

). 

 

Solution: The characteristic equation is corresponding to the eigen value 𝜆 is given by  

 

|𝐴 − 𝜆𝐼 | = 0 
 

⇒ |
1 0 −1
1 2 1
2 2 3

| − 𝜆 |
1 0 0
0 1 0
0 0 1

| = 0 
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                                                      ⇒ |
1 − 𝜆 0 −1

1 2 − 𝜆 1
2 2 3 − 𝜆

| = 0   

 

                                                       ⇒ (𝜆 − 1)(𝜆 − 2)(𝜆 − 3) = 0 
 

Thus, the eigen values are 1, 2 and 3. 

 
Now, corresponding to the eigen value 1 we have, 

 

 

(
1 0 −1
1 2 1
2 2 3

)(
𝑥
𝑦
𝑧
) =1(

𝑥
𝑦
𝑧
) 

 

 

Then X = (
𝑘

−𝑘
0

) = 𝑘 (
1

−1
0

). 

 

Therefore, the eigenvector corresponding to the eigenvalue 1 is (
1

−1
0

). 

 

Similarly, for the eigenvalues 2 and 3, we get the eigenvectors as (
−2
1
2

) and (
1

−1
−2

). 

 

Thus, we may write the modal matrix as 𝑃 =  (
1 −2 1

−1 1 −1
0 2 −2

). 

 

We get |𝑃| =  |
1 −2 1

−1 1 −1
0 2 −2

| = 2 ≠ 0 

 

Therefore, 𝑃−1 =
1

2
 (

0 −2 1
−2 −2 0
−2 −2 −1

). 

Thus, we get the Diagonal matrix  

 

𝐷 = 𝑃−1𝐴𝑃 =
1

2
 (

0 −2 1
−2 −2 0
−2 −2 −1

)(
1 0 −1
1 2 1
2 2 3

)(
1 −2 1

−1 1 −1
0 2 −2

) 

                   

                    = (
1 0 0
0 2 0
0 0 3

). 
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5.11 Applications of Eigenvalues and Eigenvectors in different fields: 

 
        Originally eigenvalues and eigenvectors were used to study principal axes of the 

rotational motion of rigid bodies, but now widely used in stability analysis, atomic orbitals, 

facial recognition, and matrix diagonalization. 

        Also, it is used in geometric transformations, principal component analysis, in graph 

theory, Markov chain analysis, vibration analysis, stress and strain analysis, wave transport, 

molecular orbitals, geology and glaciology, basic reproduction number, eigenfaces etc.  

 

Exercises:  

 

1. Find the eigenvectors of the matrix A = (
1 1 0
0 1 1
0 0 1

). 

2. Find the eigenvalues and eigenvectors of 𝐴, 𝐴2, 𝐴 + 4𝐼 and 𝐴−1 of 𝐴 =  [
2 −1

−1 2
]. 

Also, check the trace and determinant of A. 

3. Find the eigenvalues and eigenvectors of the matrix [
1 −1 0

−1 2 −1
0 −1 1

]. 

 

4. Find the eigenvalues and eigenvectors of the matrix [
2 1 2
4 2 4
2 1 2

]. 

 

5. Find the eigenvalues and eigenvectors of the matrix [
1 2 1
3 6 3
4 8 4

]. 

 

6. Find the eigenvalues and eigenvectors of the matrix [
2 1 2
4 2 4
2 1 2

]. 

 

7. Find the eigenvalues and eigenvectors of the matrix [
6 3 3
2 1 1
8 4 4

]. 

 

8. Verify Cayley-Hamilton theorem for the matrix (
2 −1 1

−1 2 −1
1 −1 2

). Hence find the 

inverse matrix. 

9. Verify Cayley-Hamilton theorem for the matrix (
1 2 3
2 −1 4
3 1 1

). Hence find the inverse 

matrix. 

10. Verify Cayley-Hamilton theorem for the matrix (
−1 1 0
−4 3 0
1 0 2

). Hence find the inverse 

matrix. 
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11. Verify if the matrix is diagonalizable: 𝐴 = [
4 1
6 −1

]. 

 

12. Compute the Diagonal form 𝐴 = [
2 0 0
1 3 1
0 0 3

]. 
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Chapter 6 

Vector Spaces 

6.1 Introduction 

A vector space is a fundamental mathematical structure used in various fields, including physics, 

engineering, and computer science. It provides a framework for studying linear combinations, 

transformations, and multi-dimensional spaces. 

6.2 Definition and Basic Properties 

A vector space 𝑉 over a field 𝐹 is a set equipped with two operations: 

 Vector addition: +: 𝑉 × 𝑉 → 𝑉 

 Scalar multiplication: ⋅: 𝐹 × 𝑉 → 𝑉 

These operations satisfy the following axioms for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and all scalars 𝑎, 𝑏 ∈ 𝐹: 

1. Associativity of Addition: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) 

1. Commutativity of Addition: 𝑢 + 𝑣 = 𝑣 + 𝑢 

2. Additive Identity: There exists 0 ∈ 𝑉 such that 𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑉. 

3. Additive Inverse: For each 𝑣 ∈ 𝑉, there exists −𝑣 ∈ 𝑉 such that 𝑣 + (−𝑣) = 0. 

4. Associativity of Scalar Multiplication: 𝑎(𝑏𝑣) = (𝑎𝑏)𝑣. 

5. Distributivity of Scalars over Vector Addition: 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣. 

6. Distributivity of Scalars over Field Addition: (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣. 

7. Multiplicative Identity: 1𝑣 = 𝑣 for all 𝑣 ∈ 𝑉. 

Let 𝑉 be a vector space over a field 𝐹, and let 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝑎, 𝑏 ∈ 𝐹. The following properties 

hold: 

6.3 Elementary Properties 
1. Uniqueness of the Zero Vector: There is only one vector 0 in 𝑉 such that 

𝑣 + 0 = 𝑣, ∀𝑣 ∈ 𝑉. 

1. Uniqueness of Additive Inverses: For each 𝑣 ∈ 𝑉, there is a unique −𝑣 such that 

𝑣 + (−𝑣) = 0. 
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2. Zero Scalar Multiplication: For any 𝑣 ∈ 𝑉, 

0 ⋅ 𝑣 = 0. 

 That is, multiplying any vector by the scalar 0 results in the zero vector. 

3. Zero Vector Scaling: For any scalar 𝑎 ∈ 𝐹, 

𝑎 ⋅ 0 = 0. 

 Scaling the zero vector by any scalar does not change it. 

4. Negation of a Scalar Multiple: For any 𝑣 ∈ 𝑉 and 𝑎 ∈ 𝐹, 

(−𝑎)𝑣 = −(𝑎𝑣). 

 That is, multiplying by a negative scalar is equivalent to negating the vector. 

5. Negation of a Vector is Scalar Multiplication by −1: 

(−1)𝑣 = −𝑣. 

6. Cancellation Law: If 

𝑢 + 𝑣 = 𝑢 + 𝑤, 

 then 

𝑣 = 𝑤. 

7. Scalar Multiplication by Zero Implies Zero Vector: If 𝑎𝑣 = 0 for some nonzero scalar 

𝑎, then 

𝑣 = 0. 

 This means that if scaling a vector results in the zero vector, the vector must have been 

zero to begin with. 

Examples of Vector Spaces 

1. Rn as a Vector Space 

The set of all ordered 𝑛 -tuples of real numbers, 

𝑅𝑛 = {(𝑣1, 𝑣2, … , 𝑣𝑛)|𝑣𝑖 ∈ 𝑅} 

is a vector space over 𝑅, with operations: 

𝑢 + 𝑣 = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2, … , 𝑢𝑛 + 𝑣𝑛) 

𝑐𝑣 = (𝑐𝑣1, 𝑐𝑣2, … , 𝑐𝑣𝑛), 𝑐 ∈ 𝑅 

Verification: 
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1. Closure: The sum and scalar multiple of two 𝑛 -tuples are also 𝑛 -tuples. 

2. Zero vector: 0 = (0,0, … ,0). 

3. Additive inverse: −𝑣 = (−𝑣1, −𝑣2, … , −𝑣𝑛). 

4. Commutativity and associativity follow from real number addition. 

5. Distributive and associative properties hold due to real number multiplication. 

Thus, 𝑅𝑛 is a vector space. 

2. Polynomial Space Pn(R) 

The set of all polynomials of degree at most  𝑛, 

𝑃𝑛(𝑅) = {𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛|𝑎𝑖 ∈ 𝑅} 

is a vector space over 𝑅, with operations: 

(𝑝 + 𝑞)(𝑥) = 𝑝(𝑥) + 𝑞(𝑥), (𝑐𝑝)(𝑥) = 𝑐 ⋅ 𝑝(𝑥). 

Verification: 

 Closure: The sum and scalar multiple of polynomials of degree at most 𝑛 remain 

polynomials of degree at most 𝑛. 

 Zero vector: The zero polynomial 0(𝑥) = 0. 

 Additive inverse: −𝑝(𝑥). 

 Commutativity, associativity, and distributive properties follow from real number 

operations. 

Thus, 𝑃𝑛(𝑅) is a vector space. 

3. Space of Continuous Functions  C([a,b]) 

The set of all continuous functions on [𝑎, 𝑏], 

𝐶([𝑎, 𝑏]) = {𝑓: [𝑎, 𝑏] → 𝑅|𝑓is continuous} 

is a vector space over 𝑅, with operations: 

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥), (𝑐𝑓)(𝑥) = 𝑐 ⋅ 𝑓(𝑥). 

Verification: 

 Closure: The sum and scalar multiple of continuous functions are continuous. 

 Zero vector: 𝑓(𝑥) = 0. 

 Additive inverse: −𝑓(𝑥). 
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 Commutativity, associativity, and distributive properties hold pointwise. 

Thus, 𝐶([𝑎, 𝑏]) is a vector space. 

6.4 Vector Subspaces 

Definition and Basic Properties 

Definition 

Let 𝑉 be a vector space over a field 𝐹. A nonempty subset 𝑊 ⊆ 𝑉 is called a vector subspace of 

𝑉 if it satisfies the following conditions: 

1. Closure under addition: If 𝑢, 𝑣 ∈ 𝑊, then 𝑢 + 𝑣 ∈ 𝑊. 

1. Closure under scalar multiplication: If 𝑣 ∈ 𝑊 and 𝑐 ∈ 𝐹, then 𝑐𝑣 ∈ 𝑊. 

If a subset 𝑊 satisfies the two conditions above, then it is automatically a vector space with the 

same operations as 𝑉, and we say that 𝑊 is a subspace of 𝑉. 

Example 1 

The following are always subspaces of any vector space 𝑉: 

 The zero subspace  {0}, consisting of only the zero vector. 

 The vector space 𝑉 itself is a subspace of 𝑉. 

Example 2 

Consider the vector space 𝑅3 with standard vector addition and scalar multiplication. The 

following are subspaces: 

 The set of all vectors of the form (𝑥, 0,0), which forms the 𝑥 -axis in 𝑅3. 

 Any plane through the origin, such as 𝑊 = {(𝑥, 𝑦, 0)|𝑥, 𝑦 ∈ 𝑅}. 

 The zero subspace {(0,0,0)}. 

The Subspace Criterion 

To verify whether a subset is a subspace, we use the following theorem: 

Theorem 

A nonempty subset 𝑊 of a vector space 𝑉 is a subspace of 𝑉 if and only if for all 𝑢, 𝑣 ∈ 𝑊 and 

𝑎, 𝑏 ∈ 𝐹, the linear combination 

𝑎𝑢 + 𝑏𝑣 ∈ 𝑊. 

Proof 

 Suppose 𝑊 is a subspace. Then, by definition, it is closed under addition and scalar 

multiplication. Hence, for any scalars 𝑎, 𝑏, we have 𝑎𝑢 ∈ 𝑊 and 𝑏𝑣 ∈ 𝑊, and their sum 

is also in 𝑊. 
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 Conversely, if the condition holds for all 𝑢, 𝑣 ∈ 𝑊 and scalars 𝑎, 𝑏, then choosing 𝑎 = 1 

and 𝑏 = 1 shows closure under addition, and choosing 𝑏 = 0 shows closure under scalar 

multiplication. 

Examples and Counter examples 

Example 3 
Consider the set 

𝑊 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3|𝑥 + 𝑦 + 𝑧 = 0}. 

To check if 𝑊 is a subspace: 

 Closure under addition: If (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) are in 𝑊, then 

(𝑥1 + 𝑥2) + (𝑦1 + 𝑦2) + (𝑧1 + 𝑧2) = (𝑥1 + 𝑦1 + 𝑧1) + (𝑥2 + 𝑦2 + 𝑧2) = 0. 

 Thus, 𝑊 is closed under addition. 

 Closure under scalar multiplication: If 𝑐 ∈ 𝑅, then 

𝑐(𝑥 + 𝑦 + 𝑧) = 𝑐𝑥 + 𝑐𝑦 + 𝑐𝑧 = 0. 

 Thus, 𝑊 is closed under scalar multiplication. 

Since both properties hold, 𝑊 is a subspace. 

Counter Example 
Consider the subset 

𝑆 = {(𝑥, 𝑦) ∈ 𝑅2|𝑥𝑦 = 0}. 

It is not a subspace because it is not closed under addition. For example, (1,0) and (0,1) are in 𝑆, 

but their sum (1,1) is not. 

Note: Vectors are fundamental objects in linear algebra. They can be “added together” and 

“scaled” to form new vectors. This chapter introduces “linear combinations”, the concept of 

“spanning” a space, and the key properties of “linear dependence” and “linear independence”. 

These ideas are essential in understanding vector spaces, basis, and dimension. 

6.5 Linear Combination of Vectors 

Definition: Let 𝑉 be a vector space over a field 𝐹, and let 𝑣1, 𝑣2, … , 𝑣𝑛 be vectors in 𝑉. A vector 

𝑤 ∈ 𝑉 is said to be a linear combination of 𝑣1, 𝑣2, … , 𝑣𝑛 if there exist scalars 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝐹 

such that 

𝑤 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛. 

Example 4: Consider the vectors 𝑣1 = (1,2,3) and 𝑣2 = (2,3,4) in 𝑅3. The vector 𝑤 = (5,8,11) 

can be written as: 
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𝑤 = 3𝑣1 + 𝑣2. 

Thus, 𝑤 is a linear combination of 𝑣1 and 𝑣2. 

Remark 
The concept of a linear combination is crucial because it helps define the span of a set of vectors, 

which describes all possible vectors that can be formed from a given set. 

6.6 Linear Dependence and Independence and Basis 

Definition and Interpretation 

Definition: A set of vectors {𝑣1, 𝑣2, … , 𝑣𝑛} in a vector space 𝑉 is called linearly dependent if 

there exist scalars 𝑐1, 𝑐2, … , 𝑐𝑛, not all zero, such that 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 = 0. 

This means that at least one of the vectors in the set can be expressed as a linear combination of 

the others. 

Definition: A set of vectors {𝑣1, 𝑣2, … , 𝑣𝑛} is said to be linearly independent if the only 

solution to the equation 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 = 0 

is 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0. 

Examples 

Example 5: Consider the vectors: 

𝑣1 = (1,2,3), 𝑣2 = (2,4,6), 𝑣3 = (3,6,9) 

in 𝑅3. These vectors satisfy: 

2𝑣1 − 𝑣2 = 0. 

Since we found nonzero scalars that satisfy the equation, the vectors are linearly dependent. 

Example 6: Consider the vectors: 

𝑣1 = (1,0,0), 𝑣2 = (0,1,0), 𝑣3 = (0,0,1) 

in 𝑅3. Suppose: 

𝑐1(1,0,0) + 𝑐2(0,1,0) + 𝑐3(0,0,1) = (0,0,0). 

Then, comparing components, we get: 

𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0. 

Since the only solution is the trivial one, these vectors are linearly independent. 
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Theorems on Linear Dependence 

Theorem 1: Any set of more than 𝑛 vectors in an 𝑛 -dimensional vector space is linearly 

dependent. 

Proof 

Let 𝑉 be an 𝑛 -dimensional vector space, and suppose we have a set of 𝑚 vectors {𝑣1, 𝑣2, … , 𝑣𝑚} 

with 𝑚 > 𝑛. 

Since the dimension of 𝑉 is 𝑛, any basis of 𝑉 consists of exactly 𝑛 linearly independent vectors. 

This means that at most 𝑛 vectors can be linearly independent in 𝑉. 

Since our set has more than 𝑛 vectors, at least one of them must be expressible as a linear 

combination of the others. That is, there exist scalars 𝑐1, 𝑐2, … , 𝑐𝑚, not all zero, such that: 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑚𝑣𝑚 = 0. 

This shows that the vectors are linearly dependent. 

Theorem 2: Any subset of a linearly dependent set is also linearly dependent. 

Proof Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a linearly dependent set. This means there exist scalars 

𝑐1, 𝑐2, … , 𝑐𝑛, not all zero, such that: 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 = 0. 

Now, consider a subset 𝑆′ of 𝑆. Since 𝑆′ consists of some or all of the vectors in 𝑆, the linear 

dependence equation above still holds within 𝑆′. That is, at least one of the vectors in 𝑆′ is 

expressible as a linear combination of the others in 𝑆′. Thus, 𝑆′ is also linearly dependent. 

Theorem 3: Any set of vectors in a vector space that contains the zero vector is linearly 

dependent. 

Proof Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛, 0} be a set of vectors where 0 is the zero vector. Consider the 

equation: 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 + 𝑐𝑛+10 = 0. 

Choosing 𝑐𝑛+1 ≠ 0 and setting all other coefficients to zero, we get: 

𝑐𝑛+10 = 0. 

Since 𝑐𝑛+1 ≠ 0, this provides a nontrivial solution, proving that the set is linearly dependent. 

Theorem 4: A set containing two vectors 𝑣1 and 𝑣2 is linearly dependent if and only if one is a 

scalar multiple of the other. 

Proof 

Suppose 𝑣2 = 𝑐𝑣1 for some scalar 𝑐. Then: 

𝑣2 − 𝑐𝑣1 = 0. 

This is a nontrivial linear dependence relation, so {𝑣1, 𝑣2} is linearly dependent. 
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Now,  suppose 𝑣1 and 𝑣2 are linearly dependent. Then there exist scalars 𝑐1, 𝑐2, not both zero, 

such that: 

𝑐1𝑣1 + 𝑐2𝑣2 = 0. 

If 𝑐1 ≠ 0, we can rewrite: 

𝑣1 = −
𝑐2

𝑐1
𝑣2. 

This shows that one vector is a scalar multiple of the other. 

Theorem 5: Any set of three vectors in 𝑅2 is linearly dependent. 

Proof The space 𝑅2 has dimension 2, so any basis consists of at most two linearly independent 

vectors. 

If we have three vectors 𝑣1, 𝑣2, 𝑣3 in 𝑅2, then at least one of them must be a linear combination 

of the others. Thus, there exist scalars 𝑐1, 𝑐2, 𝑐3, not all zero, such that: 

𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3𝑣3 = 0. 

This confirms that any three vectors in 𝑅2 are always linearly dependent. 

Exercise 6.6.1: Determine whether the following vectors in 𝑅3 are linearly dependent or 

independent: 

𝑣1 = (1,2,3), 𝑣2 = (4,5,6), 𝑣3 = (7,8,9). 

Exercise 6.6.2: Find a basis for the subspace of 𝑅3 spanned by the vectors 

(1,2,3), (2,4,6), (3,6,9). 

Exercise 6.6.3: Prove that if a set of vectors contains the zero vector, it must be linearly 

dependent. 

Exercise 6.6.4: Prove that if 𝑛 + 1 vectors are chosen from an 𝑛 -dimensional space, they must 

be linearly dependent. 

Exercise 6.65: Determine whether the following vectors in 𝑅3 are linearly dependent or 

independent: 

𝑣1 = (1,2,3), 𝑣2 = (4,5,6), 𝑣3 = (7,8,9). 

Exercise 6.6.6: Find a basis for the subspace of 𝑅3 spanned by the vectors 

(1,2,3), (2,4,6), (3,6,9). 

Exercise 6.6.7: Prove that if a set of vectors contains the zero vector, it must be linearly 

dependent. 
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Exercise 6.6.8:  Prove that a set of two vectors in 𝑅3 is always linearly dependent if one is a 

scalar multiple of the other. 

Linear Independence and Basis 

A set of vectors {𝑣1, 𝑣2, … , 𝑣𝑘} is linearly independent if: 

𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑘𝑣𝑘 = 0 ⇒ 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑘 = 0. 

Definition A set of vectors 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛} in a vector space 𝑉 is called a basis if: 

1. 𝐵 is linearly independent. 

1. 𝐵 spans 𝑉, meaning that every vector in 𝑉 can be written as a linear combination of 

vectors in 𝐵. 

The number of elements in any basis is the dimension of 𝑉. 

6.7 Spanning Sets and Basis of a Subspace 

Definition  

A set of vectors 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑘} ⊂ 𝑉 is said to span a subspace 𝑊 if every vector in 𝑊 can 

be written as a linear combination of vectors in 𝑆: 

𝑊 = span(𝑆) = {𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘|𝑐𝑖 ∈ 𝐹}. 

Definition 

A set 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a basis for a subspace 𝑊 if: 

1. 𝐵 spans 𝑊. 

2. 𝐵 is linearly independent. 

Example 7: Spanning Set in R2 

Consider the set of vectors: 

𝑆 = {[
1
0

] , [
0
1

] , [
1
1

]}. 

The set 𝑆 spans 𝑅2 because any vector 𝑣 = [
𝑥
𝑦] can be written as a linear combination: 

𝑣 = 𝑎 [
1
0

] + 𝑏 [
0
1

] + 𝑐 [
1
1

]. 

However, this set is not a basis because it contains three vectors in a 2-dimensional space, 

meaning it is linearly dependent. 

Example 8: Basis of R2 

The set: 
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𝐵 = {[
1
0

] , [
0
1

]} 

is a basis for 𝑅2 because: 

2. It is linearly independent: If 

𝑎 [
1
0

] + 𝑏 [
0
1

] = 0, 

 then 𝑎 = 0 and 𝑏 = 0. 

 It spans 𝑅2: Any vector in 𝑅2 can be written as a linear combination of these two 

vectors. 

Thus, 𝐵 is a basis for 𝑅2. 

Example 9: Spanning Set and Basis in R3 

Consider the set: 

𝑆 = {[
1
0
0

] , [
0
1
0

] , [
0
0
1

] , [
1
1
1

]}. 

This set spans 𝑅3 because any vector 𝑣 = [
𝑥
𝑦
𝑧

] can be expressed as a linear combination 

of these four vectors. 

However, it is not a basis because it contains four vectors in a 3-dimensional space, 

meaning it is linearly dependent. 

A basis for 𝑅3 is: 

𝐵 = {[
1
0
0

] , [
0
1
0

] , [
0
0
1

]}. 

This set is linearly independent and spans 𝑅3, so it forms a basis. 

Example 10: Basis of the Space of Polynomials P2 

The space of polynomials of degree at most 2 is: 

𝑃2 = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2|𝑎0, 𝑎1, 𝑎2 ∈ 𝑅}. 

A basis for 𝑃2 is: 

𝐵 = {1, 𝑥, 𝑥2}. 

These three polynomials are linearly independent: If 

𝑎0(1) + 𝑎1(𝑥) + 𝑎2(𝑥2) = 0 
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 for all 𝑥, then 𝑎0 = 𝑎1 = 𝑎2 = 0. 

They span 𝑃2: Any polynomial in 𝑃2 can be written as a linear combination of these 

three. 

Thus, 𝐵 is a basis of 𝑃2. 

Example 11: Infinite-Dimensional Basis – Fourier Series 

The space of periodic functions on [0,2𝜋], denoted 𝐿2(0,2𝜋), has an infinite basis given by: 

𝐵 = {1,sin𝑥,cos𝑥,sin2𝑥,cos2𝑥,sin3𝑥,cos3𝑥, … }. 

This basis is infinite because the space of all periodic functions cannot be spanned by a finite set 

of functions. 

 

Each vector space has spanning sets and bases, but a basis must be both spanning and linearly 

independent. 

 

Exercises 

Exercise 6.7.1 

Determine whether the following sets are subspaces of 𝑅3: 

1. 𝑊1 = {(𝑥, 𝑦, 𝑧)|𝑥 − 2𝑦 + 3𝑧 = 0}. 

1. 𝑊2 = {(𝑥, 𝑦, 1)|𝑥, 𝑦 ∈ 𝑅}. 

Exercise 6.7.2 

Find a basis for the subspace of 𝑅3 given by 

𝑊 = span{(1,2,3), (2,4,6), (3,6,9)}. 

Theorem[Replacement Theorem] Let 𝑉 be a vector space over a field 𝐹. Suppose that 𝑆 =
{𝑣1, 𝑣2, … , 𝑣𝑚} is a linearly independent set in 𝑉 and that 𝑇 = {𝑤1, 𝑤2, … , 𝑤𝑛} is a spanning set 

for 𝑉. If 𝑚 > 𝑛, then 𝑆 cannot be linearly independent, and if 𝑚 ≤ 𝑛, then some vectors of 𝑇 can 

be replaced by vectors from 𝑆 to form a new spanning set of 𝑉. 

Proof Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑚} be a linearly independent set, and let 𝑇 = {𝑤1, 𝑤2, … , 𝑤𝑛} be a 

spanning set of 𝑉. Since 𝑇 spans 𝑉, each vector in 𝑆 can be written as a linear combination of 

vectors from 𝑇. 

Step 1: Expressing Vectors of 𝑆 in Terms of  𝑇 

Each 𝑣𝑖 (for 1 ≤ 𝑖 ≤ 𝑚) can be written as: 
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𝑣𝑖 = 𝑎𝑖1𝑤1 + 𝑎𝑖2𝑤2 + ⋯ + 𝑎𝑖𝑛𝑤𝑛,for some scalars𝑎𝑖𝑗 ∈ 𝐹. 

This forms a system of 𝑚 equations in 𝑛 unknowns. 

Step 2: Linear Dependence When 𝑚 > 𝑛 

If 𝑚 > 𝑛, then we have more equations than unknowns. This implies that the system has a 

nontrivial solution where at least one of the 𝑣𝑖’s is a linear combination of the others. This 

contradicts the assumption that 𝑆 is linearly independent, proving that 𝑆 cannot be independent if 

𝑚 > 𝑛. 

Step 3: Replacing Vectors to Form a New Spanning Set 

If 𝑚 ≤ 𝑛, we construct a new spanning set by replacing some vectors in 𝑇 with vectors from 𝑆. 

We proceed by replacing 𝑤1 with 𝑣1. Since 𝑣1 is a linear combination of the 𝑤𝑗’s, we can 

express 𝑤1 in terms of the remaining vectors and 𝑣1. This replacement preserves the spanning 

property. 

Repeating this process for 𝑣2, 𝑣3, … , 𝑣𝑚, we eventually replace 𝑚 vectors in 𝑇, resulting in a new 

spanning set that includes 𝑆. This new set still spans 𝑉, as every vector in 𝑉 can still be written 

as a linear combination of the updated set. 

Thus, we have replaced 𝑚 vectors from 𝑇 with the 𝑚 linearly independent vectors from 𝑆, 

proving the second part of the theorem. 

Theorem: If v1, v2, . . . , vr are vectors in a vector space V , then: 

(a) The set W of all linear combinations of v1, v2, . . . , vr is a subspace of V. 

 

(b) W is the smallest subspace of V that contains v1, v2, . . . , vr every other 

subspace of V that contains v1, v2, . . . , vr must contain W 

Proof: (a) To show that W is a subspace of V , it must be proven that it is closed 

under addition and scalar multiplication. There is at least one vector in W , namely, 

0, since 0 = 0v1 + 0v2 + · · · + 0vr. If u and v are vectors in W , then 

u = c1v1 + c2v2 + · · · + crvr 

and 

v = k1v1 + k2v2 + · · · + krvr 

where c1, c2, . . . , cr, k1, k2, . . . , kr are scalars. Therefore 

      u + v = (c1 + k1)v1 + (c2 + k2)v2 + · · · + (cr + kr)vr  
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and, for any scalar k, ku = (kc1)v1 + (kc2)v2 + · · · + (kcr)vr. 

Thus, u + v and ku are linear combinations of v1, v2, . . . , vr and consequently lie in W . 

Therefore, W is closed under addition and scalar multiplication. 

 

(b) Each vector vi is a linear combination of v1, v2, . . . , vr since we can write 

 

vi = 0v1 + 0v2 + · · · + 1vi + · · · + 0vr 

Therefore, the subspace W contains each of the vectors v1, v2, . . . , vr. Let W ' be any 

other subspace that contains v1, v2, . . . , vr. Since W ' is closed under addition and scalar 

multiplication, it must contain all linear combinations of v1, v2, . . . , vr. Thus W ' 

contains each vector of W . 

Theorem: Let S = {v1, v2, . . . , vr} and S' = {w1, w2, . . . , wk} be two sets of vectors in 

a vector space V . Then span(S) = span(S') if and only if each vector in S is a linear 

combination of those in S' and (conversely) each vector in S' is a linear combination of 

those in S. 

Proof. If each vector in S is a linear combination of those in S' then span(S) ⊆ span(S') and 

if each vector in S' is a linear combination of those in S then span(S') ⊆ span(S) and 

therefore span(S) = span(S'). 

If                                                     vi= a1w1 + a2w2 + · · · + anwn 

for all possible a1, a2, . . . , an then vi ∈ span(S)  but  vi /∈ span(S') therefore and vice versa. 

6.8 Dimension of a Vector Space 

Definition: The dimension of a vector space 𝑉, denoted 𝑑𝑖𝑚(𝑉), is the number of vectors in any 

basis of 𝑉. 

Example: The dimension of 𝑅𝑛 is 𝑛, since the standard basis consists of 𝑛 vectors 

{(1,0, … ,0), (0,1, … ,0), … , (0,0, … ,1)}. 

Theorem: Any two bases of a vector space have the same number of elements. 

Proof Let 𝐵1 and 𝐵2 be two bases of 𝑉. Assume 𝐵1 has more elements than 𝐵2. Then, since 𝐵1 

spans 𝑉, every vector in 𝐵1 can be expressed as a linear combination of vectors in 𝐵2, 



F.14 

 

contradicting linear independence of 𝐵1. Similarly, reversing the roles of 𝐵1 and 𝐵2, we obtain a 

contradiction, proving that both bases must have the same number of elements. 

Exercises 

Exercise 1: Determine whether the set {(1,0,0), (0,1,0), (0,0,1)} forms a basis for 𝑅3. 

Exercise 2: Find the dimension of the space of all polynomials of degree at most 3. 

Exercise 3: Prove that if 𝑉 is a vector space of dimension 𝑛, any set of 𝑛 linearly independent 

vectors is a basis of 𝑉. 

Existence of a Basis (Spanning Set and Linear Independence) 

Theorem: Every vector space has a basis. 

Proof: Let 𝑉 be a vector space. If 𝑉 = {0}, the trivial space, then the set {0} is a basis. For non-

trivial vector spaces, take any spanning set of 𝑉, say 𝑆 = {𝑣1, 𝑣2, … }. If 𝑆 is linearly independent, 

it is a basis. If not, remove vectors from 𝑆 until you obtain a linearly independent set. This set 

must span 𝑉 by the definition of a spanning set. Thus, 𝑉 has a basis.  

2. Uniqueness of Basis (Dimension Theorem) 

Theorem: Any two bases of a vector space 𝑉 have the same number of elements. 

Proof: Let 𝐵1 = {𝑏1, 𝑏2, … , 𝑏𝑛} and 𝐵2 = {𝑐1, 𝑐2, … , 𝑐𝑚} be two bases of 𝑉. Assume for 

contradiction that 𝑛 ≠ 𝑚. Without loss of generality, assume 𝑛 < 𝑚. Then {𝑏1, 𝑏2, … , 𝑏𝑛} is a 

linearly independent set of vectors. Since 𝐵2 is a basis, each 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑛 can be written as a 

linear combination of the vectors in 𝐵2. This contradicts the fact that 𝐵2 is linearly independent. 

Therefore, 𝑛 = 𝑚, so all bases of 𝑉 have the same size.  

3. Dimension of a Subspace 

Theorem: If 𝑊 is a subspace of a vector space 𝑉, then the dimension of 𝑊 is less than or equal 

to the dimension of 𝑉. 

Proof: Let 𝐵𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑘} be a basis of 𝑊, and 𝐵𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} be a basis of 𝑉. 

Since 𝐵𝑊 is a set of linearly independent vectors in 𝑉, and 𝐵𝑉 is a spanning set for 𝑉, we have 

𝑘 ≤ 𝑚, so 𝑑𝑖𝑚(𝑊) ≤ 𝑑𝑖𝑚(𝑉).  

4. Extension of a Linearly Independent Set 

Theorem: If 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a linearly independent set of vectors in a vector space 𝑉, then 

it can be extended to a basis of 𝑉. 

Proof: Let 𝑆 be a linearly independent set in 𝑉. If 𝑆 spans 𝑉, then 𝑆 is already a basis. Otherwise, 

take any vector 𝑣 ∈ 𝑉 that is not in the span of 𝑆. Add this vector to 𝑆, and continue adding 

vectors from 𝑉 that are not in the span of the set so far, maintaining linear independence. This 

process must eventually result in a basis of 𝑉.  
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5. Rank-Nullity Theorem 

Theorem: For a linear transformation 𝑇: 𝑉 → 𝑊 between vector spaces 𝑉 and 𝑊, we have 

𝑑𝑖𝑚(ker(𝑇)) + 𝑑𝑖𝑚(im(𝑇)) = 𝑑𝑖𝑚(𝑉) 

Proof: Let {𝑣1, 𝑣2, … , 𝑣𝑘} be a basis for the kernel of 𝑇, and extend it to a basis 

{𝑣1, 𝑣2, … , 𝑣𝑘, 𝑣𝑘+1, … , 𝑣𝑛} of 𝑉. The set {𝑇(𝑣𝑘+1), 𝑇(𝑣𝑘+2), … , 𝑇(𝑣𝑛)} is linearly independent 

and spans the image of 𝑇, so 𝑑𝑖𝑚(im(𝑇)) = 𝑛 − 𝑘. Therefore, 

𝑑𝑖𝑚(ker(𝑇)) + 𝑑𝑖𝑚(im(𝑇)) = 𝑘 + (𝑛 − 𝑘) = 𝑛 = 𝑑𝑖𝑚(𝑉) 

Thus, the rank-nullity theorem holds.  

6. Independence of the Columns of a Matrix 

Theorem: The columns of an 𝑚 × 𝑛 matrix are linearly independent if and only if the rank of 

the matrix is equal to 𝑛. 

Proof: Let 𝐴 be an 𝑚 × 𝑛 matrix. The columns of 𝐴 are linearly independent if the only solution 

to 𝐴𝑥 = 0 is 𝑥 = 0. This implies that the nullity of 𝐴 is 0. By the rank-nullity theorem, we know 

that the rank of 𝐴 (the number of linearly independent columns) is 𝑛. Therefore, the columns are 

linearly independent if and only if the rank of 𝐴 is 𝑛. ▫ 

 

6.9 Linear Transformations 

A function 𝑇: 𝑉 → 𝑊 between vector spaces is a linear transformation if: 

𝑇(𝑎𝑣 + 𝑏𝑤) = 𝑎𝑇(𝑣) + 𝑏𝑇(𝑤)for all𝑣, 𝑤 ∈ 𝑉and𝑎, 𝑏 ∈ 𝐹. 

6.10 Inner Product Spaces 

An inner product on a vector space 𝑉 is a function ⟨⋅,⋅⟩: 𝑉 × 𝑉 → 𝐹 satisfying: 

1. ⟨𝑣, 𝑣⟩ ≥ 0, with equality if and only if 𝑣 = 0. 

1. ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩. 

2. ⟨𝑎𝑢 + 𝑏𝑣, 𝑤⟩ = 𝑎⟨𝑢, 𝑤⟩ + 𝑏⟨𝑣, 𝑤⟩. 

6.11 Applications of Vector Spaces 

Vector spaces have wide-ranging applications in: 

 Quantum mechanics (Hilbert spaces) 

 Engineering (Signal processing, Control systems) 

 Machine learning (Feature vector spaces) 
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 Computer graphics (Transformations and projections) 

6.12 Illustrative Examples 

1. Determine whether the set S={(1,2,3),(4,5,6)} is a basis for R3. 

Solution: 

To check if 𝑆 = {(1,2,3), (4,5,6)} is a basis for 𝑅3, we need to check two things: 

 Linear independence. 

 Spanning 𝑅3. 

Step 1: Linear independence check. 

The set 𝑆 contains only two vectors, so we cannot form a basis for 𝑅3, since 𝑅3 has dimension 3. 

A basis for 𝑅3 must have three linearly independent vectors. However, we will still check if 

these two vectors are linearly independent. 

To check for linear independence, we need to solve the equation: 

𝑐1(1,2,3) + 𝑐2(4,5,6) = (0,0,0) 

This gives the system of equations: 

𝑐1 + 4𝑐2 = 0 

2𝑐1 + 5𝑐2 = 0 

3𝑐1 + 6𝑐2 = 0 

Solving the first equation for 𝑐1, we get 𝑐1 = −4𝑐2. Substituting this into the second equation: 

2(−4𝑐2) + 5𝑐2 = 0 ⟹ −8𝑐2 + 5𝑐2 = 0 ⟹ −3𝑐2 = 0 ⟹ 𝑐2 = 0 

Therefore, 𝑐2 = 0 and 𝑐1 = 0. 

Since the only solution is 𝑐1 = 𝑐2 = 0, the vectors are linearly independent. 

Step 2: Conclusion. 

Since the set 𝑆 contains only two vectors and we are working in 𝑅3, the set cannot span 𝑅3 

because it does not have enough vectors to span a 3-dimensional space. 

Therefore, 𝑆 is not a basis for 𝑅3. 

2. Prove that 𝑺 = {(𝟏, 𝟎, 𝟎), (𝟎, 𝟏, 𝟎), (𝟎, 𝟎, 𝟏)} is a basis for R3. 

Solution: 

To prove that 𝑆 = {(1,0,0), (0,1,0), (0,0,1)} is a basis for 𝑅3, we need to verify that: 
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 The set 𝑆 is linearly independent. 

 The set 𝑆 spans 𝑅3. 

Step 1: Linear independence. 

We check if the set 𝑆 is linearly independent by solving the equation: 

𝑐1(1,0,0) + 𝑐2(0,1,0) + 𝑐3(0,0,1) = (0,0,0) 

This leads to the system of equations: 

𝑐1 = 0 

𝑐2 = 0 

𝑐3 = 0 

The only solution is 𝑐1 = 𝑐2 = 𝑐3 = 0, which shows that the set 𝑆 is linearly independent. 

Step 2: Spanning. 

To show that 𝑆 spans 𝑅3, we need to show that any vector (𝑥, 𝑦, 𝑧) ∈ 𝑅3 can be written as a 

linear combination of the vectors in 𝑆. Let: 

(𝑥, 𝑦, 𝑧) = 𝑐1(1,0,0) + 𝑐2(0,1,0) + 𝑐3(0,0,1) 

This gives the system of equations: 

𝑐1 = 𝑥 

𝑐2 = 𝑦 

𝑐3 = 𝑧 

Therefore, any vector in 𝑅3 can be written as a linear combination of (1,0,0), (0,1,0), (0,0,1), 

meaning 𝑆 spans 𝑅3. 

Conclusion: 

Since 𝑆 is both linearly independent and spans 𝑅3, 𝑆 is a basis for 𝑅3. 

3. Find a basis for the subspace W={(x,y,z)ϵR3, 𝒙 − 𝒚 + 𝒛 = 𝟎} 

Solution: 

The subspace 𝑊 is defined by the equation 𝑥 − 𝑦 + 𝑧 = 0. We will find a basis for this subspace 

and determine its dimension. 

Step 1: Express the equation in terms of free variables. 

From 𝑥 − 𝑦 + 𝑧 = 0, we can solve for 𝑥: 
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𝑥 = 𝑦 − 𝑧 

Therefore, every vector in 𝑊 can be written as: 

(𝑥, 𝑦, 𝑧) = (𝑦 − 𝑧, 𝑦, 𝑧) = 𝑦(1,1,0) + 𝑧(−1,0,1) 

Step 2: Find linearly independent vectors. 

The vectors (1,1,0) and (−1,0,1) are linearly independent because neither is a scalar multiple of 

the other. Thus, these two vectors form a basis for 𝑊. 

Step 3: Determine the dimension of 𝑊. 

Since the basis for 𝑊 consists of two vectors, the dimension of 𝑊 is 2. 

Conclusion: 

A basis for 𝑊 is {(1,1,0), (−1,0,1)}. The dimension of 𝑊 is 2. 

4. Prove that the set of all 2x2 matrices with real entries M2(R) forms a vector space. 

Solution: 

To prove that 𝑀2(𝑅), the set of all 2x2 matrices with real entries, is a vector space, we must 

verify that it satisfies all the axioms of a vector space. 

Step 1: Closure under addition. 

Let 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) and 𝐵 = (
𝑒 𝑓
𝑔 ℎ

) be two matrices in 𝑀2(𝑅). Their sum is: 

𝐴 + 𝐵 = (
𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ▫

) 

Since the sum of two real numbers is a real number, the resulting matrix is also a 2x2 matrix with 

real entries. Thus, 𝐴 + 𝐵 ∈ 𝑀2(𝑅). 

Step 2: Closure under scalar multiplication. 

Let 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) be a matrix in 𝑀2(𝑅), and let 𝑟 ∈ 𝑅 be a scalar. The scalar multiple is: 

𝑟𝐴 = (
𝑟𝑎 𝑟𝑏
𝑟𝑐 𝑟𝑑

) 

Since the product of a real number and a real number is a real number, the resulting matrix is a 

2x2 matrix with real entries. Thus, 𝑟𝐴 ∈ 𝑀2(𝑅). 

Step 3: Verify other axioms. 

The other axioms (commutativity and associativity of addition, existence of additive identity and 

inverses, distributivity of scalar multiplication, and multiplicative identity of scalar 

multiplication) can be easily verified using properties of real numbers and matrix operations. 
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Conclusion: 

Since 𝑀2(𝑅) satisfies all the axioms of a vector space, we conclude that the set of all 2x2 

matrices with real entries forms a vector space. 

5. Determine whether the set 𝑺 = {(𝟏, 𝟐, 𝟑), (𝟒, 𝟓, 𝟔)} is a basis for 𝑹𝟑. 

Solution: 

To check if 𝑆 = {(1,2,3), (4,5,6)} is a basis for 𝑅3, we need to check two things: 

 Linear independence. 

 Spanning 𝑅3. 

Step 1: Linear independence check. 

The set 𝑆 contains only two vectors, so we cannot form a basis for 𝑅3, since 𝑅3 has dimension 3. 

A basis for 𝑅3 must have three linearly independent vectors. However, we will still check if 

these two vectors are linearly independent. 

To check for linear independence, we need to solve the equation: 

𝑐1(1,2,3) + 𝑐2(4,5,6) = (0,0,0) 

This gives the system of equations: 

𝑐1 + 4𝑐2 = 0 

2𝑐1 + 5𝑐2 = 0 

3𝑐1 + 6𝑐2 = 0 

Solving the first equation for 𝑐1, we get 𝑐1 = −4𝑐2. Substituting this into the second equation: 

2(−4𝑐2) + 5𝑐2 = 0 ⟹ −8𝑐2 + 5𝑐2 = 0 ⟹ −3𝑐2 = 0 ⟹ 𝑐2 = 0 

Therefore, 𝑐2 = 0 and 𝑐1 = 0. 

Since the only solution is 𝑐1 = 𝑐2 = 0, the vectors are linearly independent. 

Step 2: Conclusion. 

Since the set 𝑆 contains only two vectors and we are working in 𝑅3, the set cannot span 𝑅3 

because it does not have enough vectors to span a 3-dimensional space. 

Therefore, 𝑆 is not a basis for 𝑅3. 

6. Prove that 𝑺 = {(𝟏, 𝟎, 𝟎), (𝟎, 𝟏, 𝟎), (𝟎, 𝟎, 𝟏)} is a basis for 𝑹𝟑. 

Solution: 

To prove that 𝑆 = {(1,0,0), (0,1,0), (0,0,1)} is a basis for 𝑅3, we need to verify that: 



F.20 

 

 The set 𝑆 is linearly independent. 

 The set 𝑆 spans 𝑅3. 

Step 1: Linear independence. 

We check if the set 𝑆 is linearly independent by solving the equation: 

𝑐1(1,0,0) + 𝑐2(0,1,0) + 𝑐3(0,0,1) = (0,0,0) 

This leads to the system of equations: 

𝑐1 = 0 

𝑐2 = 0 

𝑐3 = 0 

The only solution is 𝑐1 = 𝑐2 = 𝑐3 = 0, which shows that the set 𝑆 is linearly independent. 

Step 2: Spanning. 

To show that 𝑆 spans 𝑅3, we need to show that any vector (𝑥, 𝑦, 𝑧) ∈ 𝑅3 can be written as a 

linear combination of the vectors in 𝑆. Let: 

(𝑥, 𝑦, 𝑧) = 𝑐1(1,0,0) + 𝑐2(0,1,0) + 𝑐3(0,0,1) 

This gives the system of equations: 

𝑐1 = 𝑥 

𝑐2 = 𝑦 

𝑐3 = 𝑧 

Therefore, any vector in 𝑅3 can be written as a linear combination of (1,0,0), (0,1,0), (0,0,1), 

meaning 𝑆 spans 𝑅3. 

Conclusion: 

Since 𝑆 is both linearly independent and spans 𝑅3, 𝑆 is a basis for 𝑅3. 

7. Find a basis for the subspace 𝑾 = {(𝒙, 𝒚, 𝒛) ∈ 𝑹𝟑: 𝒙 − 𝒚 + 𝒛 = 𝟎}. 

Solution: 

The subspace 𝑊 is defined by the equation 𝑥 − 𝑦 + 𝑧 = 0. We will find a basis for this subspace 

and determine its dimension. 

Step 1: Express the equation in terms of free variables. 

From 𝑥 − 𝑦 + 𝑧 = 0, we can solve for 𝑥: 
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𝑥 = 𝑦 − 𝑧 

Therefore, every vector in 𝑊 can be written as: 

(𝑥, 𝑦, 𝑧) = (𝑦 − 𝑧, 𝑦, 𝑧) = 𝑦(1,1,0) + 𝑧(−1,0,1) 

Step 2: Find linearly independent vectors. 

The vectors (1,1,0) and (−1,0,1) are linearly independent because neither is a scalar multiple of 

the other. Thus, these two vectors form a basis for 𝑊. 

Step 3: Determine the dimension of 𝑊. 

Since the basis for 𝑊 consists of two vectors, the dimension of 𝑊 is 2. 

Conclusion: 

A basis for 𝑊 is {(1,1,0), (−1,0,1)}. The dimension of 𝑊 is 2. 

8. Prove that the set of all 2x2 matrices with real entries 𝑴𝟐(𝑹) forms a vector space. 

Solution: 

To prove that 𝑀2(𝑅), the set of all 2x2 matrices with real entries, is a vector space, we must 

verify that it satisfies all the axioms of a vector space. 

Step 1: Closure under addition. 

Let 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) and 𝐵 = (
𝑒 𝑓
𝑔 ℎ

) be two matrices in 𝑀2(𝑅). Their sum is: 

𝐴 + 𝐵 = (
𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + h

) 

Since the sum of two real numbers is a real number, the resulting matrix is also a 2x2 matrix with 

real entries. Thus, 𝐴 + 𝐵 ∈ 𝑀2(𝑅). 

Step 2: Closure under scalar multiplication. 

Let 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) be a matrix in 𝑀2(𝑅), and let 𝑟 ∈ 𝑅 be a scalar. The scalar multiple is: 

𝑟𝐴 = (
𝑟𝑎 𝑟𝑏
𝑟𝑐 𝑟𝑑

) 

Since the product of a real number and a real number is a real number, the resulting matrix is a 

2x2 matrix with real entries. Thus, 𝑟𝐴 ∈ 𝑀2(𝑅). 

Step 3: Verify other axioms. 

The other axioms (commutativity and associativity of addition, existence of additive identity and 

inverses, distributivity of scalar multiplication, and multiplicative identity of scalar 

multiplication) can be easily verified using properties of real numbers and matrix operations. 
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Conclusion: 

Since 𝑀2(𝑅) satisfies all the axioms of a vector space, we conclude that the set of all 2x2 

matrices with real entries forms a vector space. 

9. Let 𝑨 = (
𝟏 𝟐
𝟑 𝟒

) and 𝑩 = (
𝟓 𝟔
𝟕 𝟖

). Find 𝑨 + 𝑩 and 𝟐𝑨 − 𝑩. 

Solution: 

First, compute 𝐴 + 𝐵: 

𝐴 + 𝐵 = (
1 2
3 4

) + (
5 6
7 8

) = (
1 + 5 2 + 6
3 + 7 4 + 8

) = (
6 8

10 12
) 

Now, compute 2𝐴 − 𝐵: 

2𝐴 = 2 × (
1 2
3 4

) = (
2 4
6 8

) 

2𝐴 − 𝐵 = (
2 4
6 8

) − (
5 6
7 8

) = (
2 − 5 4 − 6
6 − 7 8 − 8

) = (
−3 −2
−1 0

) 

Conclusion: 

The sum 𝐴 + 𝐵 = (
6 8

10 12
) and the difference 2𝐴 − 𝐵 = (

−3 −2
−1 0

). 

10. Prove that if a set 𝑺 is linearly independent, then every subset of 𝑺 is linearly 

independent. 

Solution: 

Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a linearly independent set. We need to prove that every subset of 𝑆 is 

linearly independent. 

Suppose 𝑇 = {𝑣1, 𝑣2, … , 𝑣𝑘} is a subset of 𝑆. We want to prove that 𝑇 is linearly independent. By 

definition, 𝑇 is linearly independent if the only solution to the equation: 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘 = 0 

is 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑘 = 0. 

Since 𝑆 is linearly independent, the equation 

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 = 0 

has only the trivial solution 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0. 

Since 𝑇 is a subset of 𝑆, the equation 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘 = 0 is a restriction of the linear 

combination equation for 𝑆. Therefore, the only solution to this equation is also 𝑐1 = 𝑐2 = ⋯ =
𝑐𝑘 = 0, which shows that 𝑇 is linearly independent. 
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Conclusion: 

If a set 𝑆 is linearly independent, then every subset of 𝑆 is linear 

11. Prove that the set of all 𝒏 × 𝒏 invertible matrices does not form a vector space. 

Solution: A vector space must be closed under addition and scalar multiplication. 

Consider two invertible matrices 𝐴 and 𝐵. Their sum 𝐴 + 𝐵 may not be invertible. For example: 

𝐴 = [
1 0
0 1

] , 𝐵 = [
−1 0
0 −1

] 

Then, 

𝐴 + 𝐵 = [
0 0
0 0

], 

which is not invertible. Hence, the set of invertible matrices is not closed under addition and 

does not form a vector space. 

12. Prove that if 𝑼 and 𝑾 are subspaces of 𝑽, then 𝑼 ∩ 𝑾 is also a subspace of 𝑽. 

Solution: We verify the subspace conditions: 

 Contains the zero vector: Since 𝑈, 𝑊 are subspaces, they contain 0. Thus, 0 ∈ 𝑈 ∩ 𝑊. 

 Closed under addition: If 𝑢, 𝑤 ∈ 𝑈 ∩ 𝑊, then 𝑢, 𝑤 ∈ 𝑈 and 𝑢, 𝑤 ∈ 𝑊. Since 𝑈 and 𝑊 

are subspaces, 𝑢 + 𝑤 ∈ 𝑈 and 𝑢 + 𝑤 ∈ 𝑊, so 𝑢 + 𝑤 ∈ 𝑈 ∩ 𝑊. 

 Closed under scalar multiplication: If 𝑣 ∈ 𝑈 ∩ 𝑊 and 𝑐 ∈ 𝐹, then 𝑐𝑣 ∈ 𝑈 and 𝑐𝑣 ∈ 𝑊. 

Thus, 𝑐𝑣 ∈ 𝑈 ∩ 𝑊. 

Since all conditions hold, 𝑈 ∩ 𝑊 is a subspace of 𝑉. 

13. Find a basis and dimension of the space of all upper triangular 𝟑 × 𝟑 matrices. 

Solution: An upper triangular 3 × 3 matrix is of the form: 

𝐴 = [
𝑎 𝑏 𝑐
0 𝑑 𝑒
0 0 𝑓

]. 

There are six independent parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, so the space has dimension 6. 

A basis consists of matrices with a single nonzero entry in each independent position: 

𝐵 = {[
1 0 0
0 0 0
0 0 0

] , [
0 1 0
0 0 0
0 0 0

] , [
0 0 1
0 0 0
0 0 0

] , [
0 0 0
0 1 0
0 0 0

] , [
0 0 0
0 0 1
0 0 0

] , [
0 0 0
0 0 0
0 0 1

]}. 

Thus, the dimension is 6. 
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14. Prove that every finite-dimensional vector space is isomorphic to 𝑭𝒏 for some 𝒏. 

Solution: Let 𝑉 be a finite-dimensional vector space with basis 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛}. Define a 

map: 

𝜙: 𝑉 → 𝐹𝑛, 𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 ↦ (𝑐1, 𝑐2, … , 𝑐𝑛). 

- Injectivity: If 𝜙(𝑣) = 0, then 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 = 0, implying 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0, 

so 𝑣 = 0. Thus, 𝜙 is injective. - Surjectivity: Any (𝑐1, 𝑐2, … , 𝑐𝑛) ∈ 𝐹𝑛 corresponds to 𝑐1𝑣1 +
𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 ∈ 𝑉, so 𝜙 is surjective. 

Since 𝜙 is a bijective linear map, 𝑉 ≅ 𝐹𝑛. 

15. Show that the row space of a matrix is equal to the column space of its transpose. 

Solution: Let 𝐴 be an 𝑚 × 𝑛 matrix. Its row space is the subspace spanned by its row vectors. 

The column space of 𝐴𝑇 consists of the same vectors as the row space of 𝐴, since transposing a 

matrix swaps rows and columns. Thus, 

Row space of𝐴 = Column space of𝐴𝑇 . 

16. Prove that if 𝒅𝒊𝒎𝑽 = 𝒏, then any generating set of 𝑽 with 𝒏 elements is a basis. 

Solution: Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a spanning set of 𝑉. - If 𝑆 were linearly dependent, we could 

remove an element without losing the spanning property, contradicting that 𝑉 has dimension 𝑛. - 

Hence, 𝑆 must be linearly independent and is therefore a basis. 

 

Exercise 6 

1. Which of the following is NOT a requirement for a set to be a vector space? 

(a) Closure under vector addition 

(b) Closure under scalar multiplication 

(c) The presence of a multiplicative inverse for every vector 

(d) The existence of a zero vector 

 Answer: (c) 

2. If a set 𝑉 is a vector space, then which of the following is always true? 

(a) 𝑉 contains exactly one zero vector 

(b) 𝑉 contains at least one zero vector 

(c) 𝑉 does not contain a zero vector 
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(d) 𝑉 contains infinitely many zero vectors 

 Answer: (a) 

3. A subset 𝑊 of a vector space 𝑉 is a subspace if: 

(a) 𝑊 is closed under addition and scalar multiplication 

(b) 𝑊 is non-empty 

(c) 𝑊 contains only the zero vector 

(d) 𝑊 is finite 

 Answer: (a) 

4. The set of all solutions to the equation 𝑎𝑥 + 𝑏𝑦 = 0 in 𝑅2 forms: 

(a) A vector space 

(b) A subspace of 𝑅2 

(c) A basis of 𝑅2 

(d) Not a vector space 

 Answer: (b) 

5. A basis of a vector space is: 

(a) A set of linearly dependent vectors 

(b) A set of vectors that spans the space 

(c) A maximal set of linearly dependent vectors 

(d) A set that contains only the zero vector 

 Answer: (b) 

6. The dimension of a vector space is: 

(a) The number of vectors in the spanning set 

(b) The number of vectors in any basis 

(c) The number of linearly dependent vectors in the space 

(d) The number of vectors in the largest basis 

 Answer: (b) 
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7. If a set of vectors spans a vector space, then: 

(a) The set must be linearly independent 

(b) The set must be a basis 

(c) The set must be finite 

(d) Every vector in the space can be written as a linear combination of the set 

 Answer: (d) 

8. The rank of a matrix is: 

(a) The number of rows in the matrix 

(b) The number of nonzero rows in its row echelon form 

(c) The number of pivot columns in its row echelon form 

(d) The number of zero rows in the matrix 

 Answer: (c) 

9. A set of vectors is linearly dependent if: 

(a) At least one vector can be written as a linear combination of the others 

(b) The determinant of the matrix formed by these vectors is nonzero 

(c) All the vectors in the set are nonzero 

(d) The vectors span the entire space 

 Answer: (a) 

10. The trivial solution to a homogeneous system of linear equations is: 

(a) The zero solution 

(b) Any nonzero solution 

(c) The determinant of the coefficient matrix 

(d) The dimension of the null space 

 Answer: (a) 

11. A vector space with a finite basis is called: 

(a) Infinite-dimensional 
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(b) One-dimensional 

(c) Finite-dimensional 

(d) Unbounded 

 Answer: (c) 

12. If the number of vectors in a set is greater than the dimension of the space, then the set is: 

(a) Linearly independent 

(b) Linearly dependent 

(c) A basis 

(d) Empty 

 Answer: (b) 

13. The zero vector in a vector space is unique because: 

(a) There can be multiple zero vectors 

(b) It satisfies the axioms of a vector space 

(c) The zero vector depends on the basis 

(d) The definition of a vector space requires exactly one zero vector 

 Answer: (d) 

14. The standard basis for 𝑅3 consists of: 

(a) Any three linearly independent vectors 

(b) Three mutually orthogonal unit vectors 

(c) Any three vectors that span 𝑅3 

(d) The zero vector 

 Answer: (b) 

15. A subspace of a vector space must: 

(a) Contain the zero vector 

(b) Be finite 

(c) Contain at least two linearly independent vectors 
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(d) Contain only nonzero vectors 

 Answer: (a) 

16. The column space of a matrix is: 

(a) The space spanned by its row vectors 

(b) The space spanned by its column vectors 

(c) The space spanned by its eigenvectors 

(d) The set of all possible linear transformations of the matrix 

 Answer: (b) 

17. The rank-nullity theorem states that: 

(a) rank(𝐴) + nullity(𝐴) = number of columns of𝐴 

(b) rank(𝐴) + nullity(𝐴) = number of rows of𝐴 

(c) rank(𝐴) = nullity(𝐴) 

(d) The rank is always equal to the nullity 

 Answer: (a) 

Short Answer Questions 
1. Define a vector space with an example. 

2. What is a subspace? Give an example. 

3. State the conditions for a subset of a vector space to be a subspace. 

4. Define linear dependence and linear independence of vectors. 

5. What is the dimension of a vector space? How is it determined? 

6. Give an example of a vector space of dimension 3. 

7. What is the zero vector in a vector space, and why is it unique? 

8. If a set of vectors spans a vector space, what does it mean? 

9. Define basis of a vector space with an example. 

10. State and explain the rank-nullity theorem in brief. 
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Long Answer Questions 
1. Prove that the intersection of two subspaces of a vector space is also a subspace. 

2. Show that the set of all polynomials of degree at most 𝑛 forms a vector space. 

3. Prove that a set of vectors in a vector space is linearly dependent if and only if at least 

one vector in the set can be expressed as a linear combination of the others. 

4. Find a basis and the dimension of the solution space of the system: 

𝑥 + 2𝑦 + 3𝑧 = 0,2𝑥 + 3𝑦 + 4𝑧 = 0. 

5. Prove that the union of two subspaces is not necessarily a subspace. 

6. Explain with proof: Any finite-dimensional vector space has a basis. 

7. Find the dimension and a basis for the null space of the matrix: 

𝐴 = [
1 2 3
2 4 6
3 6 9

] 

8. Prove that any basis of a finite-dimensional vector space has the same number of 

elements. 

9. Let {𝑣1, 𝑣2, 𝑣3} be a linearly dependent set of vectors. Show that at least one of them can 

be written as a linear combination of the others. 

10. If 𝛽 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a basis of a vector space 𝑉, prove that every vector in 𝑉 can be 

uniquely expressed as a linear combination of the vectors in 𝛽. 
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Chapter 7 

 

Inner Product Spaces and Orthogonality 

 

7.1. Introduction 

An orthogonal vector space is an inner product space where the concept of orthogonality 

(perpendicularity) between vectors is well-defined. This concept plays a crucial role in various 

domains, including linear algebra, computer graphics, machine learning, and signal processing. 

Orthogonality is a fundamental property that simplifies computations, facilitates geometric 

interpretations, and underpins various mathematical and engineering techniques. The study of 

orthogonal vector spaces enables efficient transformations, decompositions, and optimizations in 

numerous applications. 

 

7.2  Dot product of Rn 

The inner product or dot product of Rn is a function ⟨ , ⟩ defined by 

⟨u, v⟩ = a1b1 + a2b2 + · · · + anbn for u  = [a1, a2, . . . , an]
T , v = [b1, b2, . . . , bn]

T ∈ Rn. 

The inner product ⟨ , ⟩ satisfies the following properties: 

(1) Linearity: ⟨𝑎𝒖 +  𝑏𝒗, 𝒘⟩  =  𝑎⟨𝒖, 𝒘⟩  +  𝑏⟨𝒗, 𝒘⟩. 

(2) Symmetric Property: ⟨u, v⟩ = ⟨v, u⟩. 

(3) Positive Definite Property: For any u ∈ V, ⟨u, u⟩ ≥ 0; and ⟨u, u⟩ = 0 if and only if u = 0. 

With the dot product we have geometric concepts such as the length of a vector, the angle between 

two vectors, orthogonality, etc. We shall push these concepts to abstract vector spaces so that 

geometric concepts can be applied to describe abstract vectors. 

 

7.3 . Inner product spaces 

Definition 2.1. An inner product of a real vector space V is an assignment that for any two 
vectors 
u, v ∈ V, there is a real number ⟨u, v⟩, satisfying the following properties: 

(4) Linearity: ⟨𝑎𝒖 +  𝑏𝒗, 𝒘⟩  =  𝑎⟨𝒖, 𝒘⟩  +  𝑏⟨𝒗, 𝒘⟩. 

(5) Symmetric Property: ⟨u, v⟩ = ⟨v, u⟩. 

(6) Positive Definite Property: For any u ∈ V, ⟨u, u⟩ ≥ 0; and ⟨u, u⟩ = 0 if and only if u = 

0. The vector space V with an inner product is called a (real) inner product space. 

 
s

 

Example 7.3.1. For 𝑥 = (𝑥1
𝑥2

) , 𝑦 = (𝑦1
𝑦2

)  ∈ ℝ2, define 

⟨𝒙, 𝒚⟩  =  2𝑥1𝑦1 −  𝑥1𝑦2 −  𝑥2𝑦1 +  5𝑥2𝑦2. 
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⟨ ⟩ 
Then, ‘.’ is an inner product on ℝ2. It is easy to see the linearity and the symmetric property. 
As for the positive definite property, note that 

 

< 𝑥1, 𝑥2 > = 2𝑥1
2 − 2𝑥1𝑥2 + 5𝑥2

2

 

Moreover, ⟨x, x⟩ = 0 if and only 

if 

= (x1 + x2)
2 + (x1 − 2x2)

2 ≥ 0. 

 

x + x2 = 0, x1 − 2x2 = 0, 

which implies x1 = x2 = 0, i.e., x = 0. This inner product on ℝ2 is different from the dot product 

of ℝ2. 

 

 

For each vector 𝑢 ∈  𝑉 , the norm (also called the length) of u is defined as the number 

 

||𝑢|| ≔ √< 𝑢, 𝑢 >. 

 

If u = 1, we call u a unit vector and u is said to be normalized. For any nonzero vector 
v ∈ V , we have the unit vector  
 

𝑣 ≔
𝑣

||𝑣||
. 

 

This process is called normalizing v. 

Let 𝑩 =  𝒖1, 𝒖2, . . . , 𝒖𝑛 be a basis of an n-dimensional inner product space V. For vectors 

𝑢, 𝑣 ∈ 𝑉, write 

𝑢 =  𝑥1𝑢1  + 𝑥2𝑢2  + ⋯ + 𝑥𝑛𝑢𝑛; 
𝑣 =  𝑦1𝑢1  +  𝑦2𝑢2  + ⋯ + 𝑦𝑛𝑢𝑛 

 

The linearity implies 

 

< 𝑢, 𝑣 >=< ∑ 𝑥𝑖𝑢𝑖

𝑛

𝑖=1

, ∑ 𝑦𝑗𝑢𝑗

𝑛

𝑗=1

> 

 

         =   ∑ ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑗=1

𝑛
𝑖=1 < 𝑢𝑖 , 𝑢𝑗 >. 

We call the 𝑛 × 𝑛 matrix  

 

𝐴 =  (

< 𝑢1, 𝑢1 > ⋯ < 𝑢1, 𝑢𝑛 >
⋮ ⋱ ⋮

< 𝑢𝑛, 𝑢1 > ⋯ < 𝑢𝑛, 𝑢𝑛 >
) 

 

the matrix of the inner product <,> relative to the basis B. Thus, using coordinate vectors 

 

[𝑢]𝐵 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 , [𝑣]𝐵 = [𝑦1, 𝑦2, … 𝑦𝑛]𝑇 , we have  

 

< 𝑢, 𝑣 > = [𝑢]𝐵
𝑇 𝐴[𝑣]𝐵
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∈ 

Examples of inner product spaces 

Example 7.3.2. The vector space Rn with the dot product 

< 𝒖 ·  𝒗 >=  𝑎1𝑏1  +  𝑎2𝑏2  + · · ·  + 𝑎𝑛𝑏𝑛, 

where u = [a1, a2, . . . , an]T , v = [b1, b2, . . . , bn]T  ℝ n, is an inner product space. The vector 

space Rn with this special inner product (dot product) is called the Euclidean n-space, and the 
dot product is called the standard inner product on ℝ n. 

Example 7.3.3. The vector space C[a;b] of all real-valued continuous functions on a closed interval 
[a; b] is an inner product space, whose inner product is defined by 

< f, g >= ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡 
b

a
  𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏]. 

Example 7.3.4. The vector space 𝑀𝑚,𝑛 of all 𝑚 × 𝑛 real matrices can be made into an inner 

product space under the inner product 

< 𝐴, 𝐵 >= 𝑡𝑟(𝐵𝑇𝐴), where 𝐴, 𝐵 ∈ 𝑀𝑚,𝑛. 

7.4  Representation of inner product 

Theorem 4.1. Let V be an n-dimensional vector space with an inner product <,>, and let A be 

the matrix of <, > relative to a basis B. Then for any vectors 𝑢;  𝑣 ∈ 𝑉 , 

< 𝑢, 𝑣 > =  𝑥𝑇𝐴𝑦 

where x and y are the coordinate vectors of u and v, respectively, i.e. , 𝑥 =  [𝑢]𝐵 𝑎𝑛𝑑 𝑦 =
 [𝑣]𝐵. 

Example 4.1. For the inner product of R3 defined by 

⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 5x2y2, 

where 𝑥 = (𝑥1
𝑥2

), 𝑦 = (𝑦1
𝑦2

) ∈ ℝ2, its matrix relative to the standard basis E ={𝑒1, 𝑒2} is 

𝐴 = [
2 −1

−1 5
]. 

The inner product can be written as 

< 𝑥, 𝑦 > = 𝑥𝑇𝐴𝑦 = (𝑥1, 𝑥2) [
2 −1

−1 5
] (𝑦1

𝑦2
) . 

Theorem 4.2. Let V be a ̄ nite-dimensional inner product space. Let A;B be matrices of the inner 

product relative to bases 𝐵, 𝐵′ of V , respectively. If P is the transition matrix from B to B′. Then 

𝐵 =  𝑃𝑇𝐴𝑃. 

7.5 Cauchy-Schwarz inequality 

Theorem 7.5.1 (Cauchy-Schwarz Inequality). For any vectors u; v in an inner product space V, 

|< 𝑢, 𝑣 >≤ ‖𝑢‖‖𝑣‖. 

Proof: Consider the function 

𝑦 =  𝑦(𝑡): = < 𝑢 +  𝑡𝑣; 𝑢 +  𝑡𝑣 >;  𝑡 ∈  ℝ 
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Then 𝑦(𝑡) ≥0 by the third property of inner product. Note that y(t) is a quadratic function of t. In 

fact, 

𝑦(𝑡) = < 𝑢, 𝑢 +  𝑡𝑣 >  + < 𝑡𝑣, 𝑢 +  𝑡𝑣 > 

= < 𝑢; 𝑢 >  + 2 < 𝑢, 𝑣 > 𝑡 + < 𝑣, 𝑣 > 𝑡2 

Thus, the quadratic equation 

< 𝑢; 𝑢 >  + 2 < 𝑢, 𝑣 > 𝑡 + < 𝑣, 𝑣 > 𝑡2 = 0 

has at most one solution as y(t) ≥ 0. This implies that its discriminant must be less or equal to zero, 

i.e., 

(2 < 𝑢, 𝑣 >)2 − 4 < 𝑢, 𝑢 >< 𝑣, 𝑣 >≤ 0.  

The Cauchy-Schwarz inequality follows. 

 

Theorem 7.5.2. The norm in an inner product space V satisfies the following properties: 

(N1) ‖𝑢‖ ≥ 0 ; and ‖𝑢‖ = 0 if and only if u = 0. 

(N2) ‖𝑐𝑢‖ = c ‖𝑢‖. 

(N3) ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ 

For nonzero vectors u; v 2 V , the Cauchy-Schwarz inequality implies 

−1 ≤
< 𝑢, 𝑣 >

‖𝑢‖ ‖𝑣‖
≤ 1 

 

angle µ between u and v is defined by 

cos 𝜃 =
< 𝑢, 𝑣 >

‖𝑢‖ ‖𝑣‖
 

The angle exists and is unique. 

7.6  Orthogonality 
Let V be an inner product space. Two vectors 𝑢, 𝑣 ∈  𝑉 are said to be orthogonal if 

< 𝑢, 𝑣 > = 0. 

Example 7.6.1. For inner product space 𝐶[−𝜋, 𝜋], the functions sin t and cos t are orthogonal as 

< sin 𝑡, cos 𝑡 ≥ ∫ sin 𝑡 cos 𝑡  𝑑𝑡 
𝜋

−𝜋

 

=
1

2
sin2 𝑡 |−𝜋

𝜋 = 0 

Example 7.6.2. Let 𝑢 =  [𝑎1;  𝑎2; ∶∶∶ ;  𝑎𝑛]𝑇 ∈  ℝ𝑛. The set of all vector of the Euclidean n-space 

ℝ𝑛 that are orthogonal to u is a subspace of ℝ𝑛. In fact, it is the solution space of the single linear 

equation 

< 𝑢, 𝑥 >= 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 0 
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Let S be a nonempty subset of an inner product space V. We denote by 𝑆⊥ the set of all vectors of 
V that are orthogonal to every vector of S, called the orthogonal complement of S in V. In notation,  

𝑆⊥ = {𝑢 ∈ 𝑉: < 𝑢, 𝑣 > = 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑣 ∈ 𝑆}. 

 

If S contains only one vector u, we write 

𝑢⊥ = {𝑣 ∈ 𝑉: < 𝑢, 𝑣 > = 0 }. 

Proposition 7.6.1. Let S be a nonempty subset of an inner product space V. Then the orthogonal 

complement   S⊥ is a subspace of V. 

Proof: To show that S⊥ is a subspace. We need to show that S⊥ is closed under addition and scalar 

multiplication. Let u, v ∈ S⊥ and 𝑐 ∈ ℝ. Since : < 𝑢, 𝑤 > = 0  and : < 𝑣, 𝑤 > = 0 for all 𝑤 ∈ 𝑆 

then 

< 𝑢 + 𝑣, 𝑤 > =< 𝑢, 𝑤 > +< 𝑣, 𝑤 >= 0 

< 𝑐𝑢, 𝑤 >= 𝑐 < 𝑢, 𝑤 > = 0  

for all 𝑤 ∈ 𝑆. So u + v, cu ∈ S⊥. Hence S⊥ is a subspace of ℝ𝑛. 

7.7 Orthogonal sets and bases 

Let V be an inner product space. A subset S ={𝑢1, 𝑢2, … 𝑢𝑛}  of nonzero vectors of V is called 

an orthogonal set if every pair of vectors are orthogonal, i.e.  

< 𝑢𝑖 , 𝑢𝑗 > = 0 𝑓𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 𝑛 

The set S ={𝑢1, 𝑢2, … 𝑢𝑛} is said to be orthonormal if  
‖𝑢‖ = 1 

Theorem 7.1 (Pythagoras). Let 𝑣1, 𝑣2, … , 𝑣𝑘 be mutually orthogonal vectors. Then 

‖𝑣1 + 𝑣2 + ⋯ + 𝑣𝑘‖2 ≤  ‖𝑣1‖2 + ‖𝑣2‖2 + ⋯ + ‖𝑣𝑘‖2 

Theorem 7.2. Let 𝑣1, 𝑣2, … , 𝑣𝑘 be an orthogonal basis of a subspace W. Then for any 𝑤 ∈ 𝑊, 

𝑤 =
<𝑣1,𝑤>

<𝑣1,𝑣1>
𝑣1 +  

<𝑣2,𝑤>

<𝑣2,𝑣2>
𝑣2+. . + 

<𝑣𝑛,𝑤>

<𝑣𝑛,𝑣𝑛>
𝑣𝑛 

7.8 Orthogonal projection 

 Definition: Orthogonal projection is a method of mapping a vector onto a subspace in such a way 
that the error (difference between the original vector and the projection) is minimized and is 
orthogonal (perpendicular) to the subspace. It is widely used in linear algebra, geometry, and 
computer graphics. 

Mathematical Concepts: Let V be a vector space with an inner product (dot product in Euclidean 
space). The orthogonal projection of a vector v onto a subspace W is the vector in W that is 
closest to v. 
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Projection onto a Line 

Given a nonzero vector a that defines a line through the origin, the orthogonal projection of a 
vector v onto a is: 

𝑷𝒓𝒐𝒋𝒂(𝒗) =
𝒗. 𝒂

𝒂. 𝒂
𝒂 

Where: 

• v⋅a is the dot product of v and a. 

• a.a is the squared magnitude of a. 

• The result is a vector parallel to a. 

Projection onto a Subspace 

If W is a subspace spanned by an orthonormal set of vectors {𝑢1, 𝑢2, … , 𝑢𝑛}, the orthogonal 

projection of v onto W is:  

𝑃𝑟𝑜𝑗𝑊𝑣 = ∑(𝑣. 𝑢𝑖)𝑢𝑖

𝑛

𝑖=1

 

This formula ensures that the projection remains within the subspace. 

Properties of Orthogonal Projection 

Idempotency: Applying the projection twice gives the same result: 

𝑃𝑟𝑜𝑗𝑊(𝑃𝑟𝑜𝑗𝑊𝒗) = 𝑃𝑟𝑜𝑗𝑊𝒗 

Minimal Distance Property: The difference between v and its projection  
𝑃𝑟𝑜𝑗𝑊𝒗 is the shortest possible. 

Orthogonality Condition: The error vector 𝑒 = 𝑣 − 𝑃𝑟𝑜𝑗𝑊𝒗 is orthogonal to every vector in W. 

Linearity: Projection is a linear transformation. 

Projection Matrix 

For a subspace defined by an orthonormal basis 𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑛] the projection matrix is: 

P𝑃 = 𝑈𝑈𝑇 . 

For a general subspace with basis vectors in matrix form A, the projection matrix is: 

P = A (Aᵀ A)⁻¹ Aᵀ. 

 Applications of Orthogonal Projection 

• Least Squares Approximation: Used in regression to find the best-fitting line or plane. 

• Computer Graphics: Used in rendering and perspective transformations. 

• Signal Processing: Used in noise reduction and filtering. 

• Machine Learning: Principal Component Analysis (PCA) relies on orthogonal 
projection to reduce dimensions. 

• Structural Engineering: Analyzing force components in different directions. 
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Example 7.8.1   Given: v = [3, 4], a = [1, 2] 

1. Compute the dot products: 

   v ⋅ a = (3)(1) + (4)(2) = 3 + 8 = 11 

   a ⋅ a = (1)(1) + (2)(2) = 1 + 4 = 5 

2. Compute the projection: 

  𝑃𝑟𝑜𝑗𝑊𝒗 =  
11

5
 ∗  [1, 2]  =  [

11

5
,

22

5
] 

7.8.1 Gram-Schmidt Orthogonalization Process 

The Gram-Schmidt orthogonalization process is a method used in linear algebra to convert 
a set of linearly independent vectors into an orthogonal (or orthonormal) set of vectors while 
preserving their span. It is widely used in numerical analysis, quantum mechanics, and signal 
processing. 

Mathematical Concept: Given a set of linearly independent vectors {𝑣1, 𝑣2, . . . , 𝑣𝑛} in an inner 

product space (such as ℝ𝑛), the Gram-Schmidt process constructs an orthogonal set 

{𝑢1, 𝑢2, . . . , 𝑢𝑛}, and if normalized, an orthonormal set {𝑒1, 𝑒2, . . . , 𝑒𝑛}, where: 

𝑒𝑖  =  
𝑢𝑖

||𝑢𝑖||
  

Gram-Schmidt Algorithm 

Given a set of linearly independent vectors {𝑣1, 𝑣2, . . . , 𝑣𝑛} 

• Initialize the first orthogonal vector: 𝑢1  =  𝑣1 

• Iterate for each vector 𝑣𝑖 and subtract projections: 

𝑢𝑖  =  𝑣𝑖  − ∑  𝑃𝑟𝑜𝑗𝑢𝑗
 𝑣𝑖

𝑖−1

𝑗=1

 (𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑖 − 1) 

where  𝑃𝑟𝑜𝑗𝑢𝑗
 𝑣𝑖 =

𝑣𝑖.𝑢𝑗 

𝑢𝑗.𝑢𝑗 
𝑢𝑗  

• Normalization (Optional) to obtain an orthonormal set:  

𝑒𝑖  =  
𝑢𝑖

||𝑢𝑖||
  

 

Example 7.8.2  Given: v1 = [3,1], v2 = [2,2] 

Step 1: Compute First Orthogonal Vector 

u1 = v1 = [3,1] 

Step 2: Compute Projection of 𝑣2 onto 𝑢1 

𝑃𝑟𝑜𝑗𝑢1
 𝑣2  =  (

𝑣2  ⋅  𝑢1

𝑢1 ⋅  𝑢1
 )  ∗  𝑢1 

= (6 + 2) / (9 + 1) * [3,1] = [2.4, 0.8] 
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Step 3: Compute Second Orthogonal Vector 

𝑢2  =  𝑣2  − 𝑃𝑟𝑜𝑗𝑢1
 𝑣2  =  [2,2]  − [2.4,0.8]  =  [−0.4, 1.2] 

Step 4: Normalize to Obtain an Orthonormal Set (Optional) 

𝑒1  =  
𝑢1

||𝑢1||
=  [

3

√(10)
,

1

√(10)
]  

𝑒2  =  
𝑢2

||𝑢2||
=  [−

0.4

√1.6
,

1.2

√1.6
] 

 

 

Properties of Gram-Schmidt Process 

• Orthogonality: The resulting set of vectors is orthogonal. 

• Preserves Span: The new vectors span the same subspace as the original set. 

• Numerical Stability: It can suffer from rounding errors in high dimensions. 

• Sequential Computation: Each new vector depends on previous ones, making parallelization 
difficult. 

 

 Applications of Gram-Schmidt Orthogonalization 

• QR Decomposition: Used to decompose a matrix A into an orthogonal matrix Q and an 
upper triangular matrix R. 

• Principal Component Analysis (PCA): Used to create orthonormal bases in data analysis. 

• Signal Processing: Helps in constructing orthogonal signals. 

• Solving Least Squares Problems: Useful in linear regression models. 

• Quantum Mechanics: Used in orthogonalization of quantum states 

 

7.9      Orthogonal Matrices 

Definition: An orthogonal matrix is a square matrix Q 

 with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors). 
Mathematically, it satisfies the condition: 

𝑄𝑄𝑇 = 𝑄𝑇𝑄 = 𝐼 

Where: 

i. 𝑄𝑇 is the transpose 𝑄 

ii. I is the Identity Matrix. 

Key Properties: 
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1. Inverse Equals Transpose: 

The inverse of an orthogonal matrix Q is its transpose: 

𝑄−1 = 𝑄𝑇 

This makes orthogonal matrices easy to invert. 

2. Preservation of Dot Product: 

For any vectors x and y, the dot product is preserved under multiplication by QQ: 

(𝑄𝑥) ⋅ (𝑄𝑦) = 𝒙 ⋅ 𝒚 

3. Preservation of Norm: 

The Euclidean norm (length) of a vector is preserved: 

                   ∥ 𝑄𝒙 ∥=∥ 𝒙 ∥ 

This implies that orthogonal matrices represent linear transformations that are isometries 

(distance-preserving). 

4. Determinant: 

The determinant of an orthogonal matrix is either +1+1 or −1−1: 

det(Q)=±1 

1. If det(Q)=1, Q represents a rotation. 

2. If det(Q)=−1, Q represents a reflection or a rotation combined with a reflection. 

5. Eigenvalues: 

The eigenvalues of an orthogonal matrix lie on the unit circle in the complex plane, meaning 

they have absolute value 1. 

6. Orthonormal Columns and Rows: 

The columns and rows of Q form an orthonormal set: 

𝒒𝑖 ⋅ 𝒒𝑗 = 𝛿𝑖𝑗 

where δij is the Kronecker delta. 

 

Applications: 

1. Rotation and Reflection: 

Orthogonal matrices are used to represent rotations and reflections in geometry and computer 

graphics. 

2. QR Decomposition: 

In numerical linear algebra, orthogonal matrices are used in QR decomposition, which is a 

method for solving linear systems and eigenvalue problems. 

3. Signal Processing: 

Orthogonal matrices are used in signal processing for transformations like the Discrete 

Fourier Transform (DFT) and wavelet transforms. 

4. Principal Component Analysis (PCA): 

In statistics and machine learning, orthogonal matrices are used in PCA to reduce the 

dimensionality of data while preserving variance. 
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{ } 
{ } 

Example 7.9.1: 2D Rotation Matrix: 

A 2D rotation matrix that rotates vectors by an angle θ is: 

𝑄 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

This matrix is orthogonal since 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼. 

1. Identity Matrix: 

The identity matrix I is trivially orthogonal. 

2. Householder Reflection: 

A Householder matrix, used in numerical algorithms, is an orthogonal matrix that reflects 

vectors across a hyperplane. 

 

Theorem 7.9.1. A linear transformation T : V → V is an isometry if and only if T 
preserving inner product, i.e., for u, v ∈ V , 

⟨𝑇 (𝒖), 𝑇 (𝒗)⟩  =  ⟨𝒖, 𝒗⟩. 

Proof. Note that for vectors u, v ∈ V , 

𝑇 (𝒖 +  𝒗) 
 2 =   ⟨𝑇 (𝒖 +  𝒗), 𝑇 (𝒖 +  𝒗)⟩  =  ⟨𝑇 (𝒖), 𝑇 (𝒖)⟩  +  ⟨𝑇 (𝒗), 𝑇 (𝒗)⟩  +  2⟨𝑇 (𝒖), 𝑇 (𝒗)⟩ 

= 𝑇 (𝒖) 
 2 

+   𝑇 (𝒗) 
 2 

+  2⟨𝑇 (𝒖), 𝑇 (𝒗)⟩, 

𝒖 +  𝒗 
 2 

=  ⟨𝒖 +  𝒗, 𝒖 +  𝒗⟩  =  ⟨𝒖, 𝒖⟩  +  ⟨𝒗, 𝒗⟩  +  2⟨𝒖, 𝒗⟩  =   𝒖 
 2 

+   𝒗 
 2 

+  2⟨𝒖, 𝒗⟩. 

It is clear that the length preserving is equivalent to the inner product preserving. 

 

Theorem 7.9.2. Let Q be an n × n matrix. The following are equivalent. 

(a) Q is orthogonal. 

(b) QT is orthogonal. 

(c) The column vectors of Q are orthonormal. 

(d) The row vectors of Q are orthonormal. 

Proof is beyond the book. 

Theorem 7.9.2. Let V be an n-dimensional inner product space with an orthonormal basis B = u1, 
u2, . . . , un . Let T: V → V be a linear transformation. Then T is an isometry if and only if 
the matrix of T relative to B is an orthogonal matrix. 

 
Proof. Let A be the matrix of T relative to the basis B. Then 

[T (u1), T (u2), . . . , T (un)] = [u1, u2, . . . , un]A. 

Note that T is an isometry if and only if T (u1), T (u2), . . . , T (un) is an orthonormal basis 
of V , and that T (u1), T (u2), . . . , T (un) is an orthonormal basis if and only the transition 
matrix A is an orthogonal matrix. 
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7.10  Diagonalization of real symmetric matrices 
 

Let V be an n-dimensional real inner product space. A linear mapping 𝑇 ∶  𝑉 → 𝑉 is said to be 
symmetric if  

⟨𝑇 (𝒖), 𝒗⟩  =  ⟨𝒖, 𝑇 (𝒗)⟩ 𝑓𝑜𝑟 𝑎𝑙𝑙  𝒖, 𝒗 ∈  𝑉. 
 

Example 7.10.1. Let A be a real symmetric n × n matrix. Let T : Rn → Rn be defined by T (x) = 
Ax. Then 
T is symmetric for the Euclidean n-space. In fact, for u, v ∈ Rn, we have 

𝑇 (𝒖)  ·  𝒗 =   (𝐴𝒖) ·  𝒗 =  (𝐴𝒖)𝑇 𝒗 =  𝒖𝑇 𝐴𝑇 𝒗 

=   𝒖𝑇 𝐴𝒗 =  𝒖 ·  𝐴𝒗 =  𝒖 ·  𝑇 (𝒗). 

 

 

 

Proposition 7.10.1. Let V be an n-dimensional real inner product space with an 

orthonormal basis B = {u1, u2 … un}. Let T ∶  V → V be a linear mapping whose matrix 

relative to B is A. Then T is symmetric if and only the matrix A is symmetric. 

Proof. Note that 

  [𝑇(𝑢1), 𝑇(𝑢2) … . 𝑇(𝑢𝑛)] = [𝑢1, 𝑢2, … 𝑢𝑛] (

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

) 

Alternatively, 

𝑇(𝑢𝑗) = ∑ 𝑎𝑖𝑗𝑢𝑖

𝑛

𝑖=1

, 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑛 

If T is symmetric, then 

 
𝑎𝑖𝑗 =< 𝑢𝑖 , 𝑇(𝑢𝑗) >=< 𝑇(𝑢𝑖), 𝑢𝑗 > = 𝑎𝑗𝑖 

So, A is symmetric. 
 
Conversely, if A is symmetric, then for vectors 𝑢 = ∑ 𝑎𝑖𝑢𝑖

𝑛
𝑖=1 , 𝑣 = ∑ 𝑏𝑖𝑢𝑖

𝑛
𝑖=1  we have 

< 𝑇(𝑢), 𝑣 > = ∑ 𝑎𝑖𝑏𝑗𝑇(𝑢𝑖)𝑢𝑗

𝑛

𝑖,𝑗=1

=  ∑ 𝑎𝑖𝑏𝑗𝑎𝑗𝑖

𝑛

𝑖,𝑗=1

 

 

= ∑ 𝑎𝑖𝑏𝑗𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

=< 𝑢, 𝑇(𝑣) > 

 

Therefore, T is symmetric.
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7.11  Illustrated examples 

1. Find the projection of u = (3, 4) onto v = (1, 2). 

➢ The projection formula is:   𝑃𝑟𝑜𝑗𝑊𝒗 = (
𝒖 · 𝒗

||𝒗||²
𝒗 

Compute the dot product: u · v = (3 × 1) + (4 × 2) = 3 + 8 = 11 

Find ||v||² = (1² + 2²) = 1 + 4 = 5 

||𝒗||² = (11/5) . (1, 2) = (11/5, 22/5) 

 

2. Verify whether the set of vectors (1, 0, -1), (0, 1, 1), and (1, 1, 0) forms an orthogonal set. 

➢ Vectors are orthogonal if every pair has a dot product of zero. 

Check 𝑣1  ·  𝑣2  =  (1 ×  0)  +  (0 ×  1)  +  (−1 ×  1)  =  0 +  0 −  1 =  −1 ≠  0 

Since 𝑣1  ·  𝑣2  ≠  0, the set is not orthogonal. 

3. Use the Gram-Schmidt process to orthogonalize the set {(1,1), (1,-1)}. 

Solution: 

Let 𝑣1  =  (1,1) 𝑎𝑛𝑑 𝑣2  =  (1, −1). 

𝑆𝑒𝑡 𝑢1  =  𝑣1  =  (1,1). 

Compute projection of v2 onto u1: 𝑃𝑟𝑜𝑗𝑢1
𝒗𝟐 =  (

𝑣2 · 𝑢1

𝑢1 · 𝑢1
 ) 𝑢1 

= ((1 × 1) + (-1 × 1)) / ((1 × 1) + (1 × 1)) (1,1) = (0,0) 

Compute 𝑢2  =  𝑣2  −  𝑃𝑟𝑜𝑗𝑢1(𝑣2)  =  (1, −1)  −  (0,0)  =  (1, −1) 

Thus, the orthogonal set is {(1,1), (1,-1)}, which is already orthogonal. 

4. Find a unit vector orthogonal to both a = (1,2,3) and b = (4,5,6). 

➢ A vector orthogonal to both can be found using the cross product: 

𝑎 × 𝑏 = [
𝑖 𝑗 𝑘
1 2 3
4 5 6

] 

= 𝑖(2 × 6 −  3 × 5) −  𝑗(1 × 6 −  3 × 4) +  𝑘(1 × 5 −  2 × 4) 
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= (−3, 6, −3) 

Now, find the unit vector: ||𝑎 ×  𝑏||  = √((−3)2 +  62 +  (−3)2)  = √(54 )  =  3√6 

Unit vector = (−
1

√6
,

2

√6
, −

1

√6)
). 

5. Compute the inner product of u = (1, 2, -1) and v = (3, 0, 4) in R³. 

➢ The inner product (dot product) is given by: 

                ⟨𝑢, 𝑣⟩  =  (1 ×  3)  +  (2 ×  0)  +  (−1 ×  4) 

=  3 +  0 −  4 =  −1 

Thus, ⟨𝑢, 𝑣⟩  =  −1. 

6. Show that the function ⟨𝑓, 𝑔⟩  =  ∫ 𝑓(𝑥)𝑔(𝑥)
1

0
𝑑𝑥  dx defines an inner product. 

➢ To be an inner product, ⟨𝑓, 𝑔⟩  must satisfy: 

i. Linearity: ⟨𝑎𝑓 +  𝑏𝑔, ℎ⟩  =  𝑎⟨𝑓, ℎ⟩  +  𝑏⟨𝑔, ℎ⟩ (holds by properties of integrals). 

ii. Symmetry: ⟨f, g⟩ = ⟨g, f⟩ (holds because multiplication is commutative). 

iii. Positivity: ⟨f, f⟩ ≥ 0 and ⟨f, f⟩ = 0 if and only if f(x) = 0 (follows from integral properties). 

Since all conditions hold, this defines a valid inner product. 

7. Find the norm of the vector u = (3, -4, 12) in the inner product space R³. 

➢ The norm is given by ||𝑢|| = √(⟨𝑢, 𝑢⟩) . 

    ⟨𝑢, 𝑢⟩  =  (3² +  (−4)² +  12²)  =  9 +  16 +  144 =  169. 

     ||𝑢|| = √(169) =  13. 

Thus, the norm of u is 13. 

8. Find the angle between the vectors u = (1, 2, 2) and v = (2, 1, 3) in an inner product space. 

➢ The angle θ is given by 𝑐𝑜𝑠(𝜃) =
⟨𝑢,𝑣⟩

(||𝑢|| ||𝑣||)
 . 

⟨u, v⟩ = (1×2) + (2×1) + (2×3) = 2 + 2 + 6 = 10. 

||𝑢||  = √(12 +  22 +  22)  = √9  =  3. 

||𝑣||  = √(22 +  12 + 32)  = √14. 
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𝑐𝑜𝑠(𝜃) =  
10

3√14
  

Thus, the angle can be found using  

𝜃 = cos−1
10

3√14
.   

9. Verify if the set {(1,1), (-1,1)} is an orthonormal set in R² under the standard inner product. 

➢ A set is orthonormal if each vector has norm 1 and they are mutually orthogonal. 

  Find norms: ||(1,1)||  = √(12 +  12)  = √(2), ||(−1,1)||  = √((−1)2 +  12)  = √(2). 

Since norms are not 1, normalize: 𝑢1 =  (
1

√2
,

1

√2
) , 𝑢₂ =  (−

1

√2
,

1

√2
). 

Check orthogonality: ⟨u₁, u₂⟩ = (1/√2)(-1/√2) + (1/√2)(1/√2) = -1/2 + 1/2 = 0. 

Since they are unit vectors and orthogonal, they form an orthonormal set. 

 

Exercises 

• MCQ type questions: 

1. Two vectors and in an inner product space are orthogonal if: 

A) 𝑢. 𝑣 = 0 

B) 𝑢. 𝑣 = 1 

C) 𝑢. 𝑣 = −1 

D) 𝑢. 𝑣 > 0 

2. In Euclidean space ℝ𝑛, the dot product of two vectors and is given by: 

A) ∑𝑎𝑖𝑏𝑖 

B) ∑𝑎𝑖
2 + ∑𝑏𝑖

2 

C) ∑𝑎𝑖𝑏𝑖
2 

D) ∑(𝑎𝑖 + 𝑏𝑖) 

3. If a set of nonzero vectors is mutually orthogonal, it is called: 

A) An independent set 

B) A unit vector set 

C) An orthogonal set 

D) A basis 
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4. An orthonormal set is an orthogonal set where each vector is: 

A) A unit vector 

B) Linearly dependent 

C) Equal to zero 

D) Parallel to others 

5. The Gram-Schmidt process is used to: 

A) Compute determinants 

B) Convert a set of vectors into an orthonormal basis 

C) Solve linear equations 

D) Compute eigenvalues 

6. The projection of a vector onto another vector is given by: 

A) 
𝑢.𝑣

‖𝑣‖
 

B) 
𝑢.𝑣

‖𝑣‖
v 

C) ‖𝑢‖‖𝑣‖ 

D) 𝑢 + 𝑣 

7. In an inner product space, the norm of a vector is given by: 

A) ‖𝑣‖ = 𝑣. 𝑣 

B) ‖𝑣‖ = √𝑣. 𝑣 

C) ‖𝑣‖ = ∑𝑣𝑖 

D) ‖𝑣‖ = 𝑣. 𝑣2 

8. If two vectors and are orthogonal, their angle satisfies: 

A) 𝜃 = 0° 

B) 𝜃 = 90° 

C) 𝜃 = 180° 

D) 𝜃 = 45° 

9. The standard basis vectors in ℝ3 , 𝑒1 = (1,0,0), 𝑒2 = (0,1,0), 𝑒3 = (0,0,1) are: 

A) Orthogonal but not orthonormal 

B) Orthonormal 

C) Linearly dependent 

D) Zero vectors 

10. If and are orthogonal, their dot product is: 

A) Always positive 
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B) Always negative 

C) Always zero 

D) Undefined 

• Short Answer type Questions: 

1. Define an inner product space with an example. 

2. What are the properties of an inner product? 

3. State the Cauchy-Schwarz inequality. 

4. What is the norm of a vector in an inner product space? 

5. When are two vectors said to be orthogonal? 

6. State and explain the Pythagorean theorem in inner product spaces. 

7. Define an orthonormal set. Give an example. 

8. What is the Gram-Schmidt process used for? 

9. If ⟨u, v⟩ = 0, what does that imply about the vectors u and v? 

10. What is the geometric significance of orthogonality in ℝ² or ℝ³? 

11. Find the projection of u = (9, 11) onto v = (1, 0). 

12. Given vectors u=(1,2), v=(3,4), compute the inner product ⟨u,v⟩ in ℝ² using the standard inner 

product. 

13. Find the norm of the vector v=(3,4,0) in ℝ³ with the standard inner product. 

14. Determine whether the vectors u=(1,2,3) and v=(2,−1,0) are orthogonal in ℝ³. 

15. Verify the Pythagorean theorem for the vectors u=(2,1),  v=(−1,2) in ℝ². 

 Answers: 

MCQ type questions: 

1-A, 2-A, 3-C, 4-A, 5-B, 6-B, 7-B, 8-B, 9-B, 10-C. 
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