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Preface

Engineering mathematics serves as the foundation for a broad range of disciplines within science and
engineering. A solid understanding of its principles is essential for students pursuing fields such as
engineering, physics, computer science, and applied mathematics. This book is designed to bridge the
gap between abstract mathematical theory and practical application, providing students with the tools
and insight required to solve real-world problems with confidence and precision. The purpose of this
volume is to offer a comprehensive and accessible resource for both learning and teaching core
concepts in linear algebra and vector spaces—areas that are crucial to many engineering applications.
It is intended for students across various domains who require a rigorous yet approachable treatment
of these mathematical topics.

The content of this book is organized into the following seven chapters:

Matrices (1)

Determinants

Matrices (1)

Systems of Linear Equations
Eigenvalues and Eigenvectors

Vector Spaces

Inner Product Spaces and Orthogonality

NookrwnpE

Each chapter has been developed to be as self-contained as possible, allowing instructors the flexibility
to tailor the order and depth of topics to match their specific course requirements. Prerequisites are
clearly indicated at the start of each chapter, helping students to navigate the material in a structured
and logical manner. To enhance the teaching and learning experience, this book incorporates several
key features:

o Clarity through Simplicity: Examples are carefully chosen and kept straightforward to ensure
that students first master the fundamental ideas before moving on to more advanced
applications.

e Modular Structure: Each chapter and section is designed to stand alone, giving educators the
freedom to adapt the material to various teaching styles and academic programs.

o Self-Contained Presentation: Most topics are fully developed within the text. In the few
instances where deeper theoretical treatment is beyond the book’s scope, appropriate references
are provided.

o Progressive Complexity: Topics are introduced in a gradual, step-by-step fashion—from basic
principles to more complex ideas—to help students build both understanding and confidence.

o Standardized Notation: Contemporary and widely accepted notation is used throughout the
book to ensure consistency and facilitate cross-referencing with other resources.

This volume is part of an ongoing effort to make engineering mathematics more accessible, relevant,
and engaging. Feedback from both students and instructors is welcome and appreciated, and will be
instrumental in guiding improvements in future editions.

(Dr. Subhabrata Mondal) 10/05/2025
Assistant Professor,
Swami Vivekananda University, Kolkata, West Bengal, India
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Chapter 1
Matrices (I)

1.1 Introduction .

Matrix is provides us with a very powerful mathematical tool which has wide application in science and
technology. In this chapter we have scope to study the matrix over real number only. Many theorems are
illustrated by a good number of examples so that engineers may feel comfort in using matrix towards any
of their work. System of linear equations is an interesting part of this chapter. Here we deal with the system
where number of unknown quantities and number of equations may not be same which may appear in
several practical problems. We introduce a very scientific method to find whether a system is solvable at
all and, if solvable, how to solve the system.

1.2 Matrices Definition

Matrices are the ordered rectangular array of numbers, which are used to express linear equations. A
matrix has rows and columns. we can also perform the mathematical operations on matrices such as
addition, subtraction, multiplication of matrix. Suppose the number of rows is m and columns is n, then
the matrix is represented as m x n matrix.

a‘l rr an

Ay 0 Amn

1.3 Types of Matrices

There are different types of matrices. Let’s see some of the examples of different types of matrices

e Square Matrix : A matrix in which the number of rows is equal to the number of columns.

2 1 4
Example: |5 6 7] IS a square matrix of order 3 x 3.
32 1 2

¢ Row Matrix and Column Matrix : A matrix having only one row is called a row matrix.
Example:[2 0 6]isalx3row matrix.
A matrix having only one column is called a column matrix.

2
Example : [0] is a 3 x 1 column matrix.
6



14

Example : Two Matrices A =

Zero matrix / Null matrix : A matrix of any order whose all elements are zero is called a null
matrix and is denoted by O.

0 0 O
Example: |0 0 O
0 0 O

Diagonal matrix : A square matrix whose elements except those in the leading diagonal are zero
is called a diagonal matrix. i.e, a;; = 0 forall i # j.

6 0 O
Example: |0 9 0
0 0 2

Identity matrix / Unit Matrix : A square matrix A = [a;j]nx, IS called an identity matrix or
unit matrix if

Q) a;j =0 foralli# jand (ii) a; = 1 for all i.

1 0 0
Example: [0 1 0
0 0 1

Upper triangular matrix : A square matrix A = [a;;]nxn IS Said to be an upper triangular matrix
ifa;; =0 foralli>j;ie, all elements below the main diagonal are zero.

6 -1 5
Example: [0 9 2
0 0 2

Lower triangular matrix : A square matrix A = [a;;],x» is said to be an lower triangular matrix
ifa;; =0 foralli <j;ie, all elements above the main diagonal are zero.

6 0 O
Example: |12 9 0
8 -1 2

Algebraic Operations On Matrices :

Equality of two Matrices : Two matrices A and B are said to be equal if and only if
0] A and B have the same order and
(i) Each element of A is equal to the corresponding element of B.

a b

c P q r .
d f] and B = [S ¢ u]areequal if

a=pb=qc=rd=se=t f=u



1.5

e Addition of Matrices : Two matrices A = [a;;] = and B = [b;;]  aresaidto be

conformable for addition if they are of the same order. The sum of the two matrices A and B is
then defined as the matrix each of whose elements is the sum of the corresponding elements of A
and B.

A+B=[ay] +[by] =[cy]  wherec;=ay+by foralliand].

0 9
1 6

1

Example 1: If A = [4 3 _4

] and B = [ _5] then

AvB= [2FL 047 940 [3 _3 1

—4+3 1-4 6-5
Properties of Matrix Addition :
(i) Commutativity : For any two matrices A and B of the same order, A+B=B+ A
(i) Associativity : If A, B and C are three matrices of the same order, then
(A+B)+C=A+(B+0
(iii) Existence of additive identity : The Null Matrix is the identity element for matrix
addition.l.e,
A+0=0+A

(iv) Existence of additive inverse : For every matrix A = [aif]mxn there exist a matrix —A4 =

[-a;] . suchthat A+ (=A)=0=(-A)+A
Example 2 : Findx,y, zand tif 2[; i]+3[(1) _01] = 3[?}

Solution : 2 B i] +3 [(1) _1] =3 [i

Or’2§ i+ _3] [12 18
or,2§ i::_192 18] [3 _]
or, 2 § i - :192_—30 1511; E_03)
Or'Z:; i-=-162 12]

osly =[5

Ans:x= 3,y=6,z=9,t =9

Example 3 : Determine the matrices A and B where

1 2 0 2 -1 5
A+2B=|6 -3 3|and2A-B=|2 -1 6
-5 3 1 0o 1 2

Solution : Given ,



1 2 0

A+ 2B = [ 6 -3 3]
-5 3 1

2 -1 5
2A—-B=(2 -1 6
0o 1 2
Multiplying equation (i) by 2 we get,
2 4 0
2A+4B=112 -6 6
-10 6 2

Substracting (ii) from (iii)
2 4 0 2 =1 5
2A+4B—(2A—B)=[12 -6 6]—[2 -1 6]
-10 6 2 0 1 2
2—-2 4—-(-1) 0-5
5B = [12—2 —6—(—-1) 6—6]
-10—-10 6—1 2—-2
0 5 -5
SB=[10 -5 O]
-10 5 0
0 1 -1
B=[2 -1 0]
-2 1 0
By putting the value of B in (i)

0 1 -1 1 2 0
A+2|2 -1 of=|6 -3 3
-2 1 0 -5 3 1
0 2 -2 1 2 0
A+|4 -2 of=|6 -3 3
—4 2 0 -5 3 1
1 2 0 [0 2 -2
A=|6 -3 3|-[4 -2 o
5 3 1l l-4 2 o
1 0 2
A=|2 -1 3
-1 1 1

1.6 Multiplication of Matrices by a scalar:
If A = [a;;] be an m x n matrix and k be any number called a scalar. Then the matrix obtained by
multiplying every element of A by k is called the scalar multiple of A by k and is denoted by KA.
Thus, kA = [ka;]



1.7

1 2 5 3 6 15
For Example:if A=|-2 3 4|, then3A=|-6 9 12
1 2 -1 3 6 -3

Properties of scalar multiplication:
Various properties of scalar multiplication are stated and proved in the following theorem.

Theorem: If A = [a;j]mxn, B = [bij] , are two matrices and k, | are scalars, then

mx

Q) k(A+ B) = kA + kB

(i) (k+DA=kKA+IA

@iii) (kDA = k(lA) = l(kA)

(iv)  (—k)A=—(kA) =k(—-4)

(v) 14=4

(vi) (—DA=-A
Subtraction of Matrices:
Definition: For two matrices A and B of the same order, the subtraction of matrix B from matrix
A'is denoted by A — B and is definedas A — B = A + (—B).

For Example :
IfA = [_13 _24 ;] and B = [_31 i :2] ,then

St P B S b I o S P O

Example 4: Find a matrix A such that 24 — 3B + 5C = O,where B =

-2 2 0
3 1 4

Solution : We have,
2A—-3B+5C=0

Janac=[2 § 2]

24 =3B —5C

=3[ 2 5B 0
e I R I R
24 = :736—_3150 gJ—rg 102+—1300]
24=[5 5 il

A-1[-16 6 10

2l-26 -2 —18
A:[—_183 —31 —59]



1.8 Multiplication of Matrices:
Two matrices A and B are said to be conformable for the product AB if the number of columns of A is
equal to the number of rows in B. That is, if A is of size m x n then B must be of size n x p , then product
AB would be a matrix of size m x p defined by
AB = (Cij)m xp Where
Cij = ai1byj + apbyjt+... +ambyj = Yio1 aixby; .
1.8.1 Properties of Matrix Multiplication:
Q) Matrix Multiplication is associative: If three matrices A, B and C are conformable for
multiplication in the order ABC, then (AB)C = A(BC) = ABC.
(i) Matrix Multiplication is distributive with respect to addition of matrices:
A(B+C) = AB + AC holds good for the matrices A , B and C provided that they are
conformable for the multiplication and the sum.
(iii)  Matrix multiplication in general is non-commutative: AB # BA , Although both AB and BA

may be defined.
(iv)  If ABis a null matrix, that is AB = O, it does not necessarily mean that either A or B should
be null matrix.
2 3
Example 5: Let A = [; _22 _31] and B = —41 25]. Find AB and BA and show

that AB # BA.
Solution : Here, Alisa 2 X 3 matrix and B is a 3 x 2 matrix. Si, AB exist and it is of order

2 3
-1 2
4 -5

242412 3-4-15
AB = 6—-2—4 94445
-16
18

Again, Bisa 3 x 2 matrix and A isa 2 x 3 matrix. So, BA exist and it is of order 3 x 3.

2 37y _, g, [2+9 —4+6 6-3 11 2 3
-1 2|3 5 Sf=|-1+e 244 -3-2|=|5 6 -5
4 5 ~11 -18 17

4—-15 —-8-10 12+5
Clearly , AB + BA.

2X2.

"'AB:B _22 —31]

AB = [106

. BA =

1.9 Positive Integral Powers of A Square Matrix:
For any square matrix, we define (i) A = 4 and, (ii)A"*! = A™ A,wheren € N.
It is evident from this definition that A2 = A. 4, A3 = A2A = (AA)A etc.



It can be easily shown that
(i) AMA™ = A™ and , (i) (A™)" = A™ for allm,n € N.
Matrix Polynomial : Let f(x) = agx™ + a;x™ ! + a,x™" % + --- + a,_,x + a,, be a polynomial and
let A be a square matrix of order n. Then,
f(A) = apA™ + A"+ a, AV + o+ a1 A+ ayl,
Is called a matrix polynomial.
For Example, if f(x) = x? — 3x + 2 is a polynomial and A is a square matrix, then f(4) = A> — 34 +
21 is a matrix polynomial.
1.9.1 Type | On Multiplication Of Matrices:

1 3 271
Example 6: Find the value of xsuch that [1 x 1] [ 2 5 1] [2] =0.
15 3 2llx

1 3 211
Solution: We have, [1  x 1][2 5 1”2]=0

15 3 2llx
7+ 2x
12 +x
21+ 2x

=>74+2x4+12x+x*>+214+2x=0

=1 x 1] =0

=>x?+16x+28=0
=>@x+14)(x+2)=0
>x=-2o0r—14.

1.9.2 Type Il On Matrix Polynomials And Matrix Polynomial Equations:

2 0 1
Example 7: Let, f(x) = x> = 5x+ 6 .Find f(A),if A=12 1 3].
1 -1 0

Solution : First we note that by f (A) we mean the matrix polynomial A> — 54 + 6I5. That is, to obtain

f (A), xis replaced by A and the constant term is multiplied by the identity matrix of order same as that

of A.
2 0 1112 0 1 44+40+1 04+0—-1 24+0+0 5 -1 2
Now,42=44=(2 1 3|2 1 3|=[4+2+4+3 0+1-3 24+3+0[=|9 -2 5
1 -1 ofl1 -1 0 2—-240 0-14+40 1-3+40 0o -1 -2
-10 O -5 6 0 O
—54A=|-10 -5 —15|and6l3=|0 6 O
-5 5 0 0 0 6
5 -1 2 -10 O -5 6 0 O 1 -1 -3
~f(A)=4A*-54+6l;=|9 -2 5]|+|-10 -5 —-15|+|0 6 O|=|]-1 -1 -10].
0 -1 -2 -5 5 0 0 0 6 -5 4 4




1.9.3 Type Il On Principle of Mathematical Induction
The Principle of Mathematical Induction:
Let P (n) be a statement involving positive integer n such that
(1) P(1) is true i.e.,the statement is true for n = 1, and

(i) P (m+ 1) istrue whenever P(m) is true i.e, the truth of P(m) implies the truth of P(m+1).
Then, P(n) is true for all positive integer n.

cosa sina

Example 8: If A, = [_ sina cos «a

| then prove that (i) Audg = Aqug . (i) (A)™ =

cosna Sinna

. ] for every positive integer n.
—sinna cosna

Solution :

(i) We find that A, Az = cosa Sina”COSB sin B

—sina cos al|[—sinf cosp

[ cosacosfS —sinasinfS  sinacosf + cosasinf
[—sinacosff —cosasinff cosacosf —sinasinf

[ cos(a+ ) sin(a+f)
|—sin(a + f) cos(a+f)

= Agip -

(i)  We shall prove the result by mathematical induction on n.

Step 1 When n = 1, by the definition of integral powers of a matrix, we obtain

(Aa)l =4, = [

cosa  sin a] _ [ cos(l.a) sin(l.a)
—sina cosa —sin(l.a) cos(1l.a)
So, the result is true for n = 1.

Step 2 Let the result is true for n = m. Then,

(Aa)m — [ CO.S maoa Sin ma]
—Sinma cosmaoa

Now, we will show that the result is true forn =m + 1

e (A,)™H = [ cos(m+ 1)a sin(m + 1)a]

—sin(m+ 1)a cos(m+ 1)a
By the definition of integral powers of a square matrix, we have
(Aa)m+1 = (Ax)"Aq



(A,)™* = [ co§ ma  sin ma] [ co§a sin a]
l—sinma cosmall—sina cosa
(Aa)mﬂ _ co§ ma cos a — sinma sir_l a co_s ma sip a + sinma cosa ]
l—sinma cosa — cosma sina — sinma sin a + cosma cos «
m+1 _ | cos(ma+a) sin(ma+a)] [ cos(m+1)a sin(m+ 1)a
(4a) " |=sin(ma + a) cos(ma + a)] N [— sin(m+ 1)a cos(m + 1)a]

This shows that the result is true for n = m + 1, whenever it is true for n = m.

Hence, by the principle of mathematical induction, the result is valid for any positive integer n.

1.10 Transpose of a Matrix

LetA = [ai j] be an m X n matrix. Then, the transpose of A, denoted by ATor A’,is ann X
m matrix such that (A");; = a;; forall i=1,2,..,n;j=1,2,..,m.

Thus, AT is obtained from A by changing its rows into columns and columns into rows.

1
Zl,thenAT =[1 2 3].
3

For example, if A =

The first row of AT is the first column of A. The second row of AT is the second column of A and so on.

1.10.1 Properties of Transpose

Let A and B be two matrices, then

. (A)' =4

Il. (A+B) =A"+ B'; Aand B being the same order.

. (kA)' = kA’, k be any scalar.

IV. (AB)' = B'A’; A and B being conformable for the product AB.

1.11 Symmetric and Skew - symmetric Matrix:

A square matrix A is said to be symmetric if its transpose coincides with itself, i.e, AT = A.
A square matrix A is said to be skew - symmetric if AT = —A.

Theorem: Every square matrix can be uniquely expressed as the sum of a symmetric matrix and a
skew- symmetric matrix.

Solution: Let A be any square matrix. Then we have
A=-(A+AT)+5(A—AT)

Denoting 5 (A + AT) by P and - (A — AT) by Q, we have A=P +Q

Now, P’ = (- (A+ AT} =~ {AT + (AT)T} =S {AT + A} =Z(A+AT) = P

Which follows that P is a symmetric matrix.



Also, Q' = (- (A— AT)}T = ~{AT — (A")"} = ~{AT — A} = —~(A—AT) = —Q

Which follows that Q is a skew-symmetric matrix.

Thus the square matrix A is expressible as the sum of a symmetric matrix P and a skew-symmetric
matrix Q.

Example 9: A matrix which is both symmetric as well as skew-symmetric is a null matrix.
Solution:

LetA = [aij] a matrix which is both symmetric and skew- symmetric.

Now, A = [al-j] is a symmetric matrix = a;; = aj; foralli,j ... (i)

Also, A = [aij] is a skew- symmetric matrix.

~ay; = —aj foralli,j = a; =—a;; foralli,j ..., (ii)

From (i) and (ii), we obtain

a;j =—a;; foralli,j = 2a;;=0 foralli,j = a;;=0foralli,j =2 A= [aij] is a null matrix.
-3 4 1

Example 10: Express | 2 3 0| as a sum of a symmetric matrix and a skew- symmetric matrix.
1 4 5

Solution : We know that A = %(A + AT) + % (A — AT) where % (A + AT) is symmetric and % (A—AT)is

skew-symmetric.

-3 4 1

Here, A=|2 3 0]

1 4 5
-3 2 1
AT=(4 3 4]
1 0 5

—-3-3 4+2 1+1

1—6 6 2 -3 3 1
2+4 3+3 0+4(=3 6 6 4- =13 3 2
1+1 440 5+5 1 2 5

-3+3 4-2 1-1 2 0 1 O
2—4 3-3 0-4 0 —4|=]-1 0 -2
4 2

1 Ty =1
~(A+AT) =~

Ta_ ATy 21
And ~(A—AT) =~

1-1 4-0 5-5 0 0
-3 3 1 0 1
A=|3 32+—10—2
1 2 5 0 2 0

1.12 Some typical type of Matrices

1. ldempotent Matrix
10



A square matrix A is said to be idempotent matrix if 4% = A.

2 -3 -5
Example : matrix A = 1 4 ] is idempotent, for
-3 —4
3 —3 —5 2 -3 =5
A? = |- =|-1 4 5
3 —3 —4 1 -3 —4

2. Nllpotent Matrix

=A.

A square matrix A is said to be nilpotent matrix of index k, if k be the least positive integer for which

A¥ = 0, null matrix.

1 -1 1
For Example: A=|-3 3 -3
-4 4 -4
1 -1 1 1 -1 1 1+3—-4
Then4?=|-3 3 -3|x|-3 3 -=3[=]|-3-9+12
-4 4 —4 -4 4 —4
0 0 O
=(0 0 0[=0
0 0 O

There fore, A is a nilpotent matrix of index 2.
3. Involutary Matrix :

A square matrix A is said to be involutary matrix if A2 =1

4 3 3
For Example: IfA=]-1 0 -1
—4 -4 -3
4 3 3 4 3 3
A2=|-1 0 -1|x|[-1 0o -1
—4 —4 -3 —4 —4 -3
16 —-3—-12 124+0-12 12-3-9
=| -4+0+4 -3+0+4 -3+0+3
—16+4+12 —-124+0+4+12 —-12+4+9
(1 0 O
=10 1 0|=1I
0 0 1

Therefore, A is an involutary matrix.

4. Orthogonal Matrix:

A square matrix A is said to be orthogonal if AA" = A'A = 1.

Properties of Orthogonal Matrices
1. If A'is orthogonal, then A~tand A’ are also orthogonal.

2. If A and B are orthogonal, then AB is also orthogonal.

-1-3+4
3+9-12

—-4-12+16 4+12-16

1434
—3-9+12
—4-12 + 16

11



cosf sind

Example 11: Show that the matrix A = [_ sinf  cos @

is orthogonal.

Solution : To prove A is orthogonal, we have to show that A’A = I.

A = cosfd —sinf
[sine cos 0

o AA = cosf sinf [cos@ —sind
—sin@ cos@ sinf cos@
=[ cos?6 + sin?0 —cos 8 sin @ + sin O cos 6 2[1 0 —
—sin @ cos @ + cos @ sin O sin®@ + cos?6 0 1
1 2 2
Example 12: IfA=|2 1 2|, provethat A2 —4A4—51=0.
2 2 1
1 2 2 1 2 2
Solution: A =AxA=|2 1 2|x[2 1 2
2 21 2 21

=12X14+1X24+2%X2 2X24+1Xx14+2%x2 2%x24+1%x2+4+2x1
12X 14+2X24+1X2 2%X24+2X1+1X2 2%X24+2%Xx2+1x%x1

'988‘

[1X14+2X24+2%X2 1X24+2%X14+2X%X2 1><2+2><2+2><1]

=18 9 8
8 8 9

I
OO O WO ©WO
I
OO . OO ®
I
cowu

Il
o

Example 13: If A is a symmetric matrix and B is skew- symmetric matrix such that A+ B =
2 3 :
[5 _1],then find AB.

Solution: It is given that A is a symmetric matrix and B is a skew-symmetric matrix.

Therefore, AT = A and BT = —B.

Now,A+B=[§ _31] ............. )
=>(A+B)T=[§ _31]T=>AT+BT=§ _51]:A—B=[§ _51] e (i)
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Adding (i) and (ii) , we obtain

a=[s Al+ls 21=[15

= A= %[g _82] = [i _41]

From (i) and (iii), we obtain
o Al+s=[s Zl=8=[;

Sl P | RS B P

3+5
-1-1

(iiD)

]=[§ _82]

] [4 —]:[

-2+0
—4+0

R

Example 14: Find the values of x , y, z if the matrix 4 =

Is.

Solution: We have,

0 2y =z 0
A= y —z| 2AT=|2y y
X =y z z
It is given that
ATA=1,
[0 x 0 2y =z
= |2y y —y x y —Z] =
Lz - X -y z
2x 1 0 O
= ] [0 1 O]
0 0 1
=>2x2=1,6y2=1,322=1
=t5. y=iR. =i
1 2 2
Example 15:1fA=12 1
a 2 b

Solution: We have,

—Z A

x
-y

1 2 2 1 2 a
A=12 1 =2l =24T=|2 1 2
a 2 b 2 -2 b

1 0 O
0 1 0

0 0 1

-

0

0 2y
Xy
x -y

VA
—z| satisfy the equation ATA =
Z

—2] is a matrix satisfying AAT = 913, then find the values of a and b.

13



1 2 2171 2 a 1 0 0
=12 1 =212 1 2|=9|0 1 0
a 2

bll2 -2 b 0 0 1
9 0 a+2b+4 9 0 O
= 0 9 2a+2-2bl=10 9 0
la+2b+4 2a+2-2b a®+4+b? 0 0 9

>a+2b+4=0,2a+2—-2b=0anda’*+4+b*=9
>a+2b+4=0,a—b+1=0and a> +b?>=5

Solvinga+2b+4=0anda—-b+1=0, weget: a=-2 and b = —1.

Exercise 1
% MCQ:
1 1 1
1. IfA=]1 1 1].A2=?
1 1 1
a. A, b.3A, C. unit matrix, d. 2A
0 1 =2
2. If the matrix [—1 0 3 |issingular, the value of A is —
A =3 0
a) 0
b) 4
c) 2
d) -1
8 -6 2
3. If the matrix [—6 7 —4] is singular then the value of x is
2 -4 «x
a. 3, b.5, C. 2, d. 4
4, If B2 =1and A =1 — B then
a. A’=1,b.BA=0, C.AZ= A, d AB=0

o

If A= [i ﬂ then A0 =2

a.299[1 ﬂ b.21°1[1 1 c.Zloo[} 1 d. none

6. Which is true about matrix multiplication



a. it is associative. b. it is commutative.

c. it is both associative and commutative d. none.
0 5 =7
7. Thematrix |-5 0  11]isknownas
7 —-11 0
a. symmetric matrix, c. diagonal matrix
b. skew-symmetric matrix, d. scaler matrix.
3 =2 _[5 6 5
8.|f_51 6J—FL4—[_7 (o) then 4 =:
Q-L% %1
m3134d
C) __6 2 )
d) none of these.
3 4 1 y1_17 0
9. If |3 x}ko J‘[m d,mm
a)x =—-2,y=28;
b)x =2,y =-8;

C)x=3,y=—-6;
dx=-3,y=6;

0.6 Y[ =[] then

Ax=1y=2;
Dx=2,y=1;
Ox=1,y=1;

d)none of these.
11.If A = [3 —22x x Z 1] is a singular matrix, then x = ?

a)0;
b)1;
c)-1;
d)-2;
12. Let A be an m X n matrix and B be p X g matrix, then AB is defined if
an=p
bym=1p
com=gq
dp=gq
13. A square matrix A is said to be singular if
a)detA =-1
b)detA =0
c)detA=1
d)detA =-2
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2 0 1
14. The value k for which the matrix [1 —k 2] is singular is —
3 1 0
a)l
b)2
c)3
d)4
—p?

15. The matrix A = [_aé)z b is

a) ldempotent

b) Orthogonal

c) Nilpotent

d) None of these
Answers: 1b 2c¢c 3a 4b 5a 6.4 7d 8b 9.c
10. c, 11.d, 12.c, 13.b, l4.c, 15.a.

% Short Answer Type Question:

i R Rl P
1 If [3 N 1 -y then find the values of x and y.
2 0 1
2. Find the value of t for which the matrix [5 t 3] is singular.
0 3 1

3 2
3. fA=2 -3 4),B= (2) C=(0 2 3)andD = (2) then find AB+CD
1 4

a. 1f2X+[1 2 =[3 8] Find X

5 IfA= _1 2] Show that A> — 54 + 71 = 0. Use this to find A*.

6. 1f4=> 2] find k such that 42 = kA - 2I,.

7. 14 =" D] findksuch that 4% — 84 + kI = 0

8. IfAz-; i and f(x) = x? — 2x — 3,show that f(4) = 0
9. Ifa=|? 3] and I = [1 O] then find A, u so that A*> = 1A + ul.
11 2 0o 1V ’

2 0 71[—x 14x 7x
10. Find the value of x for which the matrix product [0 1 O] [ 0 1 0 ] equal
1 -2 1 —4x —2x
to an identity matrix.

1 2 3
11.IfA=|3 -2 1],thenshowthatA3—23A—4OI=0
4 2 1
0 1 2
12.1f (x) = x? — 2x , find f(A) , where A= |4 5 6].
0 2 3
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13. Let A = [_27 _53] and B = [; _04], Verify that (i) (24) = 247, (i) (A + B)T =

AT + BT, (i) (A — B)T = AT — BT , (iv) (4B)" = BTA”
3
5] and B= [1 0 4],verifythat (AB)T = BTAT.
2

14 IfA =

1 -1
0 2
5 0

2 1 3

- T _ pT YT
4 1 0 Verify that (AB)" = B"A".

15. For two matrices Aand B, A = [ ] ,B =

3 4
1 2] and B = [
0 1

4 x+2
2x—3 x+1

-1 2 1

T _
16. If A" = 1 2 3

| . find AT — BT.

17.1f [ ] is a symmetric matrix, then find the value of x .

5 2 x
y z —3] 1s a symmetric matrix, findx,y,z, t.
4 t -7

18. If the matrix A =

3 -2 -4
19. Express the matrix [ 3 =2 —5] as the sum of a symmetric and skew- symmetric

-1 1 2
matrix and verify your result.
3 2 7
1 4 3], Find matrices X and Y such that X + Y = A, where X is a

-2 5 8
symmetric and Y is a skew- symmetric matrix.

20. Let, A =

Solution :
1. x=1,y=0; 9.1=4,u=-1
2. t=2; 10. 1/5 ;
(4 7 2
3. 20, 12.{12 19 8
8 12 3
4 3
. x=[} 2] 16.|-3 o]
-1 -2
39 55
N 17.5
6. K=1 18.x = 4,y 2,ze(C,t=-3
2 ] o =% ]
2 2 2 2
19. Symmetric matrix = % —2 —2/|; skew-symmetric matriXZZ 0 -=3f.
~2 2 2 23 0
2 2
3 3/2 5/2 0 1/2 9/2
7. K=7 20X =(3/2 4 4 ],Y: [—1/2 0 —1]
5/2 4 8 -9/2 1 0

2 Long Answer Type Question:

17



. IfA=

1 0 2
. Find XandYif X+Y =2 2 2

1 1 2
1 2 3 0 -2 -1
3 2 1f,Y= [—1 0 1
0 0 2 1 1 0
. Compute AB and BA and show that AB # BA.
2 3 4 1 3 0
1 2 3] ,andB=|-1 2 1

-1 1 2 0 0 1
2 -3 1 0 -1 1
2 -1 1|andB=

2 -1 1

1 4 4
, X—Y=|4 2 0}
-1 -1 2

Ans. X =

A=

0 3 -3
1 0 2111
0 2 1|(1[=0. (Ans.x =-2)

2 1 0111

. Verify that (AB)" = B'A" where,

1 4

0 5] andei g :%
6 7

. Findxif[1 1 x]

A=

0 1 —1],pr0ve that AB = 0.
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CHAPTER 2

Determinants

2.1 Introduction

In Engineering Mathematics, solution of simultaneous equations is very important. In this
chapter we shall study the system of linear equations with emphasis on their solution by means of
determinants.

2.2  Determinant
The notation of determinants arises from the process of elimination of the unknowns of
simultaneous linear equations.
Consider the two linear equations in X,

aix+b =0 .. (1)

ax+h, =0 .. (2
by
From (1) X:_;
1

Substituting the value of x in (2); we get the eliminant

b,
az (_ a_1> + bz = 0
or a1b2 —a, bl =0. (3)

From (1) and (2) by suppressing x, the eliminant is written as
a; by
a b

when the two rows of a,, b, and a,, b, are enclosed by two vertical bars then it is called a
determinant of second order.

=0 (4

aq by
|a2| and b,
Column1 Column 2

Row 1l —> a,_.b
Row2-—> a, b,

Each quantity a,, b, a,, b, is called an element or a constituent of the determinant. From (3)
and (4), we know that both expressions are eliminant, so we equate them.

al bl al\ bl
b =a; b2 —a b1 or A g; - albz - azb1
a Dy a, ,
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2.3

24

a by

a,b, —a,b, is called the expansion of the determinant of a, b,
3 2
Example 1. Expand the determinant 6 71
+ —
3 2
Solution. ‘; g =(3)x(7)—-(2) x(6)=21-12=0. Ans.
6 7
Exercise 2.1
Expand the following determinants :
4 6 -3 7
L | 5 Ans. 8 2. 2 4 Ans. —26
8 5 5 -2
3. 3 1 Ans. —7 4 14 3 Ans. 23
Determinant as eliminant
Consider the following three equations having three unknowns, x, y and z.
aix+biy+ciz =0 ..(1)
ax+hyy+cz =0 ..(2)
asXx+hbsy+csz =0 ..(3)
From (2) and (3) by cross-multiplication, we get
X
= 4 =k (say)

b2C3 - b3C2 N a3C2 - a2C3 - a2b3 - a3b2
x = (b,c3—byc,) k
y =(a3c,—a,c5) k
and z = (ay,b;—azh,) k
Substituting the values of x, y and z in (1), we get the eliminant
a, (b,c5—byc,) k+ by (856, —a,cy) k+ ¢y (ab;—agh,) k =0
or a, (b,C3— bsCy) — by (8,65—a4C,) + ¢y (a,0;—agh,) = 0 ..(4)
From (1), (2) and (3) by suppressing X, y, z the remaining can be written in the determinant as

a b ¢
a3 by ¢
This is determinant of third order.
As (4) and (5) both are the eliminant of the same equations.
a, b ¢
a, by c;[=a;(bc3 —bscy) — by (863 —azcy) + ¢4 (a,b3 — agh,) =0.
a3 by ¢

Minor

The minor of an element is defined as a determinant obtained by deleting the row and column
containing the element.

a, b,
as bs

b, ¢,
b

|a2 C2
cs|’

as C;

| and

Thus the minors a,, b, and c, are respectively:
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2.5

Thus 3 b
a, b, c

2 72 2= a; (minorofa; )—b:s (minorofb; ) +c1 (minorofcy ).
az by ¢ '
Cofactor
Cofactor = (- 1)™¢ Minor
where r is the number of rows of the element and c is the number of columns of the element.
The cofactor of any element of jth row and ith column is
(~ 1) minor
Thus the cofactor of a; = (- 1)*** (b,c;— bsc,) = + (b,c5— bscy)
The cofactor of b; = (= 1)2 (aycy— a5C,) = — (8,65 — a4C,)
The cofactor of ¢, = (- 1)M3 (ayby — agh,) = + (a,b; — asb,)
The determinant = a, (cofactor of a,) + a, (cofactor of a,) + a, (cofactor of a,).
Example 2. Find :
(i) Minors (ii) Cofactors of the elements of the first row of the determinant
2 35
4 10
6 2 7
Solution.
(i) The minor of the element (2) is
2*3- 5
: 10
4 1 0|= » 717 D x(N)-(0)x(2)=7-0=7
6 2 7
The minor of the element (3) is
2*3- 5
: 4 0
4 1 0|= 6 7|° (4)x(7)—(0)x(6) =28-0=28
6 2 7
The minor of the element (5) is
2:3" 5
: 4 1
4 1 0|= 6 2| @) x(2)-(1)x(6)=8-6=2
6 2 7
The cofactor of (2) = (- 1)**1 (7) =+ 7
The cofactor of (3) = (- 1)**? (28) = - 28 Ans.
The cofactor of (5) = (- 1)¥** (2) =+ 2.
6 2 3

Example 3. Expand the determinant 2 35

6 2 3 4 2 1

Solution. |2 3 5| =6 (cofactor of 6) + 2 (cofactor of 2) + 3 (cofactor of 3).

42 1 - g(3x1-5%x2)-2(2x1-4x5)+3(2x2—3x4)=-30. Ans.
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Example 4. Evaluate the determinant

1 0 4
3 5 -1
01 2
(i) With the help of second row, (ii) with the help of third column.
Solution.
0 4
(i) |3 5 -1| =3 x (cofactor of 3) + 5 x (cofactor of 5) + (— 1) (cofactor of — 1)
12 =-3(0-4)+5(2-0)+(1-0)=23.
Ans.
10 4
@iy |3 5 -1| =4 x (cofactor of 4) + (— 1) (cofactor of (— 1)) + 2 x (cofactor of 2)
01 2
3 5 10 10
=Ax (M g | HEDED g | 42X (005 g
=23.
01 2 3
1 020
Example 5. Expand the fourth order determinant 50 1 3
1210
020 120
1+2
Solution. Given determinant = (0) (-1)*** 0 1 3/+1(D) 213
0 110
1 00 1 0 2
s2 (3|2 0 3 +3(CD¥ 2 0 1
1 20 1 21
1 20 1 00 1 0 2
=0-12 1 3|+2|2 0 3|{-3/2 01
1 10 1 20 1 21
=-3-12-18
=-33.
Therefore,
01 2 3
1020
2 01 3(=-33 Ans.
1 210
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Exercise 2.2

Write the minors and co factors of each element of the following determinants and also evaluate
the determinant in each case :

-2 3 My = -9 Mp,=4 M,,=3, M, =-2

Ll g o Ap= —9 A,=—4 A, =-3 A,=-2 |A|=6 Ans.
cos® —sin®| My = cos8, M2=sin6, Mi2 =—sin 6, M= cos 6

2. | . .
sin®  cosb| A, = cosB,A,=-sin6,Ax =sinB, A, =cosb, [A|=1 Ans,
42 1 6] My =2 M;,=0 M;z=-14, My, =-16, M, =0

3 |28 7 4| Mas =112 My =—38, My, =0, My =266
1 3 2| Pu T2 ALT0 A=-14, Ay =16, Ay =0

Ay =112, Ay =-38, Ay =0, Ag3 =266, |A]=0 Ans,

M, = (ab?-ac?), M;, = (ab-ac), M;;=(c-b), M, =a’h—hc?
a bc| M,,=(ab-bc), My, =(c—a), My, = (ca?—ch?), My, =ca-hc, My; = (b-a),
4. |1 b cal| Ay =(@b?—ac?), A, =(ac—ab),A;=(c—b), A, =bc?—a%
c ab| A =@ —bc), Ay=(a-c) Ay = (ca’—cb?), A =(bc—ca), Ay =(b-2a)
|A| =(@-b)(b-c)(c—a). Ans.

Expand the following determinants :

2 -3 14 5 0 7 a h ¢
5. 5 1 -6 6. |8 -6 -4 7./h b f
-7 8 -9 2 3 9 g f ¢
Ans.|A|=5 Ans. |A|=42 Ans. |A|=abc + 2fgh —af 2— bg? - ch?
Expand the following determinants by two methods :
(i) along the-third row.
(i) along the-third column.
1 -3 2 3 -2 4 2 3 -2
8. |4 -1 2 9. |1 2 1 10. 12 3
3 52 0o 1 -1 -2 1 -3
Ans. |A|=40 Ans. |A|=-7 Ans. |A|=-37
" logs 512 logs 3 Ans.|A|=§
logs 8 logs 9 2
12. Ifa, b, c are all positive and are the pth, gth, rth
terms of a G.P. respectively; then prove that 3 2 5 7
loga p 1 -1 4 3 0
logb g 1/=0 13. | 6 4 2 -1| Ans.%
logc r 1 2 -1 0 3
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2.6 Rules of sarrus (For third order determinants only).
After writing the determinant, repeat the first two columns as below

+ + o+ - - -
a, h, ¢, a; by < a b,
dy b, | = a, "";' o @, b,
dy b, ;s ay b, c, €y LR

= (a;h,C5 + byCya5 + €18,05) + (- ¢;bya3 — a,C,b; — bya,cy)
Example 6. Expand the determinant

2 3 4
A=|1 5 3|byRuleof Sarrus.
305
o+ v 7 - -
'2 .'3 . e ~4‘." ’2 i 3 .‘.
Solution. A= .5 NGO IV
3 0 5 3 0
* » ;"- - 4 -
=(2) x (5) x (5) + (3) x (3) x (3) + (4) x (1) x (0) — (4) x (5) x (3) - (2) x (3) *x (0) — (3) x (1) x (5)
=50+27+0-60-0-15=2 Ans.
Exercise 2.3

Expand the following determinants by Rule of Sarrus.

3 2 -4 1 4 2 6 3 7 9 25 6
1 51 -1 2. |12 5 3 3. |32 13 37 4, |7 13 5
-2.6 7 3 6 4 10 4 11 9 23 6
Ans. — 155 Ans. 0 Ans. 10 Ans. 6
a-x ¢ b
5. Ifa+b+c=0, solve the equation |c b-x a =0
b a c-—X

Ans. x =+ \/(a2+b2+c2—ab—bc—ca) ,x=0



2.7 Properties of determinants
Property (i) The value of a determinant remains unaltered, if the rows are interchanged into columns
(or the columns into rows).
Consider the determinant.
a b ¢
A=|a, b, ¢
ag by ¢
=y (b,C5 —03C,) — by (8,C5 —a5c)) + ¢y (Bbs —aghy)
= a,0,C5 — a;bsC, — a,0,C5 + agh,c, + a,b;¢, — ash,c,
= (a,b,c5—a,bsc,) — (a,b,¢5 — a,bsc,) + (agh,c, — agh,c,)
= a, (b,cq —bycy) —a, (bycy—byey) + a4 (b, — byey)

=|b1 b, Db Proved.
€ G G

Property (ii)  If two rows (or two columns) of a determinant are interchanged, the sign of the value
of the determinant changes.

Interchanging the first two rows of A, we get

a b, ¢
A'=la b ¢
a; by ¢
a, (b,¢; —bycy) — b, (8,65 — a5¢y) + ¢, (a;b; - a3by)
= a,0,¢5 - ayb,C, — a,b,¢;5 + agh,cy +a,b;c, —aghsc,
=—[(a;b,c3—a;bsc,) — (a,h ¢ — agh,c,) + (a,bsc, — agb,cy)l
=—[(a; (b,c5— bgc,) — b, (a,C5 — a5C,) + ¢; (Ahg—agh,)]

a b ¢
=—|az b c|=-A Proved.
a by ¢
Property (iii) Iftwo rows (or columns) of a determinant are identical, the value of the determinant
is zero.
a b ¢
Let A=|a b; ¢, sothat the first two rows are identical.
az by ¢

By interchanging the first two rows, we get the same determinant A.
By property (ii), on interchanging the rows, the sign of the determinant changes.

or A=-A or 2A=0 or A=0 Proved.

Property (iv) If the elements of any row (or column) of a determinant be each multiplied by the
same number, the determinant is multiplied by that number.

ka; kb, ke,
AN=|la b ¢
a; by ¢
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= ka, (b,c; —bsc,) — kb, (a,c5— asc,) + ke, (a,b; — a5b,)
=k [a; (b,c3 —bsC,) — by (8,64 — a4C,) + ¢ (a,hy—agh,)]

a b ¢
= k a2 b2 Cz = k A
a; by ¢
Example 7. Prove that
a® a bec 1 1 1
b> b cal=-|a b2 ¢
¢ ¢ ab a3 b
a2 a bc
) b> b ca
Solution.
¢ ¢ ab

By multiplying R,, R,, R;by a, b and ¢ respectively we get

a® a?
1
- 3 2
abc b b
3 c?
a® a?
- | p® b2
c® ¢?
1
=—| a p?
a> b

abe| a® a® 1
abe| =~ b3 b? 1
abc ¢ ¢ 1
1 1 a2 &t
1| = —|1 b bd
1 12 &

By changing rows into columns

CS

Proved

Example 8. Without expanding and or evaluating, show that

a al
b> b 1
¢ c1
d2 d 1

bed aé a?

cda b® b2 b 1
dab - ¢ 2 ¢ 1
abc d® d?2 d 1
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Solution.

a> a 1 bed a@ a a abed
B2 b 1 ed BB b oabed|
2 . b abe
) L' cda = : 5 i R, bR,
et e 1 dab abed | & 2 ¢ abed R, —>cR,
d> d 1 abe d* d* d abed | p 4
a a2 a1 a3 & 1
abed b b2 p 1 b® b? b 1
= 1 =
abed | 2 2 ¢ 1 C4—>%C . ¢ 2 ¢ 1 Proved
d® d?2 4 1 d® d2 d 1
1 a @ 1 a bc

Example 9. Prove that 1 b b>|=|1 b cal| (Tryyourself)

1 ¢ 2 1 ¢c ab

Property (v) The value of the determinant remains unaltered if to the elements of one row (or

column) be added any constant multiple of the corresponding elements of any other
row (or column) respectively.

a b ¢
Let A=|a, b, ¢

ag by ¢

On multiplying the second column by I and the third column by m and adding to the
first column we get

a, +1Iby +me, by ¢

A'=|a, +1b, + mc, b, c,

ag+Ib;+mec; by ¢4

a b, ¢ by by ¢ ¢ b ¢
=la, b, ¢,|+ b, b, c,[+m|c, b, ¢
az by ¢ by bs ¢ C; by ¢
=A+0+0 (Since columns are identical)

= Proved
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265 240 219

Example 10. Without expanding evaluate the determinant A =|240 225 198
219 198 181

Solution. Applying C; > C; - C; and C, » C, — C;, we get

46 21 219
42 27 198
38 17 181

Applying C;, - C, —2C, and C; » C;-10C,, we get
4 21 9
A=|-12 27 -T2
4 17 11

>
Il

Applying Ry > R; - R; and R, >R, + 3R;

0 4 -2 0 2 -1
A=|0 78 -39|=2(39)|0 2 -1 |[Taking2common fromR,and39commonfromR,]

4 17 11 4 17 11
=78x0=0 (Since R, and R, are identical) Ans.

b-c c—-a a-b
Example 11. Showthat A=|{c—a a-b b-c|=0
a-b b-c c-a

b-c c-a a-b
Solution. Let A=|c-a a-b b-c

a-b b-c c-a
Applying C; = C; + C, + C;, we get

0 c—a a-b

A=|0 a-b b-c|=0
0 b-c c-a
sina.  cosa.  Sin(a+38)

Example 12. Without expanding, evaluate the determinant |sin3 cosp sin(p +3)|.

) ) siny cosy sin(y+9)
sinoe cosa  sin (o+d)

Solution. Let A=|sinB cosp sin (B +3)
siny cosy sin(y + 9)
sino.  COS o Sin o COS & + COS asin &
A=|sing cosP sinp cosd + cospsind
siny cosy sinycosd + cosysind

[Since sin (A+B)=sin AcosB +cos AsinB]
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sino cosa O

= A=|sinB  cosp 0| [Applying C; = C; — €085.C; — sind.C,)
siny cosy O

= A=0 [Since C,consists of all zeros] Ans.

2X—-1 x+7 x+4

Example 13. Solve the determinantal equation X 6 2 |=0
x-1 x+1 3

2X-1 Xx+7 x+4

Solution. Given equation | X 6 2 =0
x=1 x+1 3
0 0 x-1
. 6 2 |=0
By applyingRi — R, — (R, + R3), we get
x-1 x+1 3
On expanding by first row, we get
X-1)(®+x-6x+6) =0 = (x-1)(x-2)(x-3)=0 = x=1,2,3 Ans.
Example 14. Using the properties of determinants, show that
X+y X X
5x +4y  4x 2x|= X
10x +8y 8x 3x

X+Yy X X
Solution. Let A=| 5x+4dy 4x 2x
10x + 8y 8x 3x
Operate: R, > R, —2R; ; R; > R; — 3R;
X+y X X

X +2y 2x
A= 3x+2y 2x 0 —
Expand by Cs
7X + 5y  5x X + 5y 5X
=X [6x (3x + 2y) — 2x (7x + 5Y)]
=X [15%% + 10 xy — (14x% + 10 xy)] = X&. Proved.
Example 15. Using the properties of determinants, evaluate the following :
0 ab® ac?
ab 0 be?
a’c ch® 0
0 ab? ac?
Solution. Let A=|a®h 0 bc?
2 2
ac c¢b 0 0 a a
2 2 2
Take a2, b? and ¢ common from C,, C, and C, respectively, A=abc|b 0 b
cc O
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0 0 a

Operate: C, > C, —C5, A=a?p?c2|b -b b
c c¢c O
bh -
A =a’b%’c?.a
c ¢
Example 16. Using properties of determinants, prove that

= ab?c? (bc + bc) = 2a%b3cd,

X 'y z
Xy 2 =xyix - y)y - 2) @ - ).
E YR
Xy z 1 1 1
Solution. Let A= 2 ¥ Fl=wz|x y z
NV N
0 0 1
Operate: C;, > C, - C,;C, > C, - C,, A=Xxyz| Xx-y y-z. 2
x2—y2 y2_22 72
1
OnexpandingbyR, A=Xyz| X=Y ¥y—12 =xyz(x - ) (y - 2)
1 x2—y2 yz_zz X+Yy y+12
= xyz(x-Yy) (y-2) (z—x). Proved.
Example 17. Using the properties of determinants, show that
a+x y z
X a+y z |=af@+x+y+2).
X y a+z
a+ X y z
Solution. Let A=| X a+y z
X y a+1z
a -a 0
Operate: Rt >Ri—R2, A=[x a+y z

X y a+z

0 0
a+y+x z

x @

Operate: C; - C, +C, A=

x

y+X a+z

a+y+x z

On expanding by Ry A=a =afl@+y+x)(@+z)-(y+x 17

y+Xx a+z
=af@®+az+(y+x)at(y+x)z-(y+x7
=a?(@a+x+y+2). Proved.
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Example 18. If o isthe one of the imaginary cube roots of unity, find the value of the determinant

1 o o
o o 1
o 1 o
1 o o
Solution. The given determinant = | @ «® 1
o 1 o
By R; = R; + Ry + R, we get
l+o+0® 1+o0+0® 1+ 0+ o 0 0 O
— 2 2
= © @ 1 =l o 11 Isince1+m+ w?=0]
o’ 1 ® o 1 o
=0 (Since each entry in R, is zero) Ans.
a b c
Example 19. Without expanding the determinant, show that (a + b + c) is a factor of b ¢ a
a b c c awb
Solution. Let A=|b ¢ a
c awb
a+b+c b ¢ 1bec
Operate: C;, >C, +C, +C;, A= a+b+c cal|=(@+b+c)ll ¢c a
_ a+b+c a b 1 ab
= (a+b+c)isafactor of A. Proved.
Example 20. Using properties of determinants, prove that :
X+4 X X
X x+4 x |=16(3x+4).
X X X+4
X+4 X X
Solution. Let A= x x+4 X
X X X+4
3X+4 X X
Operate: C;, > C, +C, +C,, A=[3x+4 x+4 X
X+4 X X+ 4
1 X X 1 x X 40
_@Gx+4|1 x+4 x| =Gx+4|0 4 0O|R,-R, =(3x+4)‘ ‘
1 x x+4 0 0 4/R;—R, 0 4
=16(3x + 4) Proved.
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1 a b+c

Example 21. Without expanding the determinant, provethat |1 b c+a|=0.
1 ¢ a+b
1 a b+c

Solution. Let A=|1 b c+a
1 c a+b
1 a a+b+c 1 al
Operate : C3 — C3 + C,, A={1 b a+b+c|=(@+b+c)|1l b 1
1 c a+b+c 1 c1

=0 (+ C, and C, are identical). Proved.
£ e 22, Eval a-b-c 2a 2a
xample 22. Evaluate 2% b_c_a %
2c 2c c—-a-b

a+b+c a+b+c a+b+c

Solution. By R; = R; + R, + R, we get 2b b-c-a 2b

2c 2c c—-a-b
1 1 1
=(@+b+c)|2b b-c-a 2b
2c 2c c—-a-b
1 0 0
=(@a+b+c)j2b —(a+b+¢) 0 C,-C;
2c 0 —(a+b+c)|C;-C;
On expanding by firstrow =(a+b+c)(@a+b+c)’=(a+b+c) Ans.
1 1 1
Example 23. Show, without expanding | X Y Z|=KX =Y - 2 - X).
X2 y2 Z2
0 0 1 X—y y—-1z

Solution. ByC,-C,,C,-C,,weget=| x-y y-z 2 -y -7

x2—y2 yz_zz 72
On expanding by first row, we get

1
SN0 L E )N 6-D @+ z-x-y) =X -Y) (- 2) (2—X).Proved.
a B Y

Example 24. Prove that | o B2 P =@-BB-NE-w)(a+B+y)
B+y y+a a+p
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Solution. Let

a B 14
= a? B? y? [Applying Rz — Ry + Ry
a+pf+y a+pf+y a+pf+y
a By
=(a+p+y)|o2 P2 ¥ [Taking out (a + B +vy) common from Rg]
1 1 1

a pB-a Y- o

ApplyingC; - C, - C
—@+B+y) |02 PP -2 pplying C2 2 -G

1 0 0 C;—»>C;-C;
o 1 1
=(@+B+PPB-0)(y—a)|o? B+a y+a
1 0 0

1 1
B+a y+a
=atpr)P-a)y-o)(y+ta-p-a)
=(a+p+y)(B-7)(y—a)(a-P) Proved.
3a -a+b -a+c
Example 25. Showthat |-b +a 3b —-b+c|=3(@+b+c)(ab+bc+ca)
-c+a -c+b 3c

=(@+B+y)B-o) (y-a)l

[Expanding along Rs]

3a -a+b —-a+c
Solution. Let A=|-b+a 3b -b+c

-c+a -c+b 3c

a+b+c -a+b -a+c

Applying C; - C; +C, + C;, we get A=|la+b+c 3b -b+c
a+b+c -c+b 3c

1 -a+b -a+c

=(a+b+c)|l 3b -b+c

[Taking (a + b + ¢) common from Cs ]
1 —-c+b 3c

1 -a+b -a+c
=(@+b+c)|0 2b+a -b+a|[ApplyingRz >R2~-Ry,  R3 - R3 -R1]
0 -c+a 2c+a
2b+a -b+a

=(@a+b+o

_c+a 2c+a [Expanding along C1]
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=(@+b+c)[2b+a)(2c+a)-(-b+a)(-c+a)]
=(a+b+c){(4bc + 2ab + 2ca + a> - (bc —ab — ac + a?)}
=(a+b+c)(3bc+3ab+3ca)=3(a+ b+ c)(ab + bc + ca) Proved.

Property (vi) Ifeachelement ofarow (or column) of a determinant consists of the algebraic sum of
n terms, the determinant can be expressed as the sum of n determinants,

a+pi+q by ¢
LetA= a2 +p2+q2 bz C2
az+ps+qs by ¢

= (ag+ Py +qy) (0,65—Db3C;) — (8, + p, + ) (0,63 —b3Cy) + (a3 + p3 +a3) (0,6, —byCy)
= 2y (b,C3—03C;) —a, (byC5 —bsCy) + a5 (byC, — byCy)
+ Py (byC3—03C;) —p, (byC5—bsCy) + Py (byC, —bycy)
+ 0y (0,05 —Db3C;) — 0, (byC3—bsey) + a5 (byc; —byey)
a by ¢ P by ¢ a by ¢
=la; by c|+[ P by G+ |0 by C
az by ¢ Pz b3 C3 0 bs 3

Proved.

a a® al-1
Example31. If |b b2 b3 -1|=0, provethatabc=1.

c & -1

a a a*-1 a a a a a -1
Solution. b b2 b¥-1/=0 = |b b?> b¥| +|b b? -1|=0
c ¢2 c¢-1 c ¢ ¢ c ¢ -1

1 a & a a1
abc|l b b?|—-|b b? 1 =0

=
1 ¢ c? c ¢z 1
(Taking out common a, b, ¢ from R,, R, and R, from 1st determinant)
1 a a| |a 1 &
abc|1 b b?|+|b 1 p2(=0 .
= ) (Interchanging C, and Cy)
1 ¢ ¢ clc
1 a @ 1 a a
abc|1 b b’|—|1 b b2|=0 .
= 5 (Interchanging C, and C,)
1 ¢ ¢ 1 ¢ ¢
1 a a?
(abc - 1) (1 b b2|=0
=
1 ¢ «c?
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= abc -1=0
= abc=1.

Example 32. Show thatx =— (a + b + c) is one root of the equation:

X+a b c
b x+c a |=0 andsolvethe equation completely.
c a x+b

Solution. By C, —» C, + C, + C;, we get

1 b c
N x+a+b+c)|1 x+c a |=0
1 a X+Db
1 b c
= (x+a+b+c)]0 x-b+c a-c |=0, R,>R,—-R; Ry—>R;—R;

0 a-b X+b-c

On expanding by first column, we get
(x+a+b+c)[(x—b+c)(x+b-c)-(a-b)(a-c)] =0

= (x+a+b+c)[x*-(b-c)’—(a?—ac—ab+bhc)] =0
= (x+a+b+c)(x®-b*-c?+2bc—-a’+ac+ab-hc] =0
= (x+a+b+c)(x*-a?-b>-c?+ab+bc+ca) =0
Eitherx+a+b+c=0= x=-(a+b+c)

or X>—a?—b*-c?+ab+bc+ca=0

= X=J_r\/a2+b2+c2—ab—bc—ca

Hence, x =— (a + b + ¢) is one root of the given equation.

Example 33. Find the value of [(b + ¢)? a’ a’
b? (c +a)? b? |
c? c? (a + b)?

(b+c)?-a? a? —a?
b? — b? (c+a)?-b?

Solution. By C, - C;, C, - C;, we get
c2-(@a+hy? c2-(a+hy

a2

b2
(a+ by

Proved.
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@+b+c)(b+c-a) 0 a’
0 (@+b+c)(c+a-h b?
(@+b+c)(c-a-b) (@a+b+c)c-a-b) (a+b)?

On taking out (a + b + ¢) as common from 1st and 2nd column, we get

b+c—a 0 a?
=(a+b+c)? 0 c+a-—»b b?
c—a—-b c—a—-b (a+b)?
—a+b+c 0 a?
=(a+b+c)? 0 a—b+c b2 R; & R3; — (R +Ry)
—2b 2a 2ab
-a+b+c 0 a’
=-2(a+b+c)? 0 a-b+c b
b a —ab

On expanding by first row, we get
—2(@a+b+c)P[(-a+b+c){-ab(@a-b+c)—ab’} +a?{0-b(a-b+c)}]
—-2(@+b+cP[(~a+b+c)(—a*h—abc)—a%(a—b+c)
—2ab(@+b+c)[(~a+b+c)(-a-c)-a(@a-b+c)]
—2ab(a+b+c)?(@+ac—ab-bc—ac—-c?>—a?+ab-ac]
—2ab(@a+b+c)’(-bc—ac—c?

2abc(a+b+c)’(b+a+c)

a+x a-Xx a-xX
Example 34. Using properties of determinants, solve for x : a-x a+x a-x FO0
a-X a-x a+x
a+Xx a—-x a-x
Solution. Giventhat |[a—-x a+x a-x|=0
a-Xx a—-Xx a+x
3a—-x a—-x a-x
Applying C, - C, +C, +C, 3a-x a+x a—-x | =0
3a—-x a—-Xx a+x
1l a-x a—-x
= (Ba-x)|1 a+x a-x|=0

1 a—-x a+Xx
1 a—-x a-x

Now, R, >R, —R, ad R, >R, R, = (Ba-x|0 2 0 |=0
0 0 2X
Expanding by C1, we get  (3a — x) (4x> —0) =0
= 4x* (3a-x)=0 = If 4x* =0, then x =0
= If 3a-x=0, then x=3a
Hence, x=0 or 3a Ans.

2abc (a+b+c) Ans.
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Exercise 2.4

Prove the following:

b%® bc b+c 1 a a®-he
2 —
N 2 ca c+al=0 ) 1 b b?2-cal|=0.
a® ab a+b 1 ¢ c®-ab
a a+b a+b+c 1 1 1
3 |2 3a+2b 4a+3b+2c |=ad " a B v |=B-7F-o)(a-p).
3a 6a+3b 10a +6b+3c By ya ofp
1 a @a| |1 a b a? bc  ac+c?
5 (1D b2[=|1 b ca 6. a?+ab b? ac | = 4a%h?c?
1 ¢ c2| |1 c ab ab  b2+bc 2

Expand the following determinants, using properties of the determinants:

1 3 7 x a a
7.4 9 1| Ans.51 8.la x a|l Ans. (x+2a)(x —a).
2 7 6 a a x

9. Solve the equation

x3—a® x? «x
b3—a® b? b
cd—-a® % ¢

a3

=0,b #c,bc#0. Ans.xzﬁ,xzb,x=c.

10. Using properties of determinant prove that:

x+4 2x 2x
2x x+4 2x
2x 2x x+4

= (5x + 4)(4 — x)2.

11. Without expanding the determinant, prove that

a bc
b cal=0.

c ab

AR TIR QR

12. Without expanding the determinant, prove that

x+y y+z z+x
z x y |=0.
1 1 1
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2.8 Factor theorem
If the elements of a determinant are polynomials in a variable x and if the substitution x = a
makes two rows (or columns) identical, then (x — a) is a factor of the determinant.

When two rows are identical, the value of the determinant is zero. The expansion of a determinant
being polynomial in x vanishes on putting x = a, then x — a is its factor by the Remainder

theorem.
1 1 1

Example 35. Showthat | X Yy Z[=(X-Y)y -2 - X
NIV

Solution. If we putx =y, y=2,z=xthen in each case two columns become identical and the
determinant vanishes.

R (x=Y), (y—12), (z—Xx) are the factors.
Since the determinant is of third degree, the other factor can be numerical only k (say).

1 1 1
x Yy zi=kkx-y-29@-x - (D)
2 y2 72

This leading term (product of the elements of the diagonal elements) in the given determinant
is yz2 and in the expansion

k (x—y) (y —2) (z—x) we get kyz?
Equating the coefficient of yz2 on both sides of (1), we have

k=1
Hence the expansion = (x —y) (y —2) (z—X). Proved.
1 1 1
Example 36. Factorize A=|a? b? ¢?
a b
Solution. Puttinga=b, C, =C, and hence A =0.
. a—bisafactor of A. Similarly b — ¢, ¢ —a are also factors of A.

.. (@a=b) (b—c) (c—a) is a third degree factor of A which itself is of the fifth degree as is
judged from the leading term b?c.

. The remaining factor must be of the second degree. As A is symmetrical in a, b, ¢ the
remaining factor must, therefore, be of the form k (a2 + b? + ¢?) + | (ab + bc + ca)

) A =@-b)(b-c)(c—a){k (@ +b*+c?+I(ab+bc+ca)}

Ifk = 0, we shall get terms like a*b, bc etc. which do not occur in A. Hence, k must be zero.
o A =(@a-b)y(b-c)(c—a){0+I(ab+bc+ca)}
or A =l(@-b)(b-c)(c—a)(ab+bc+ca)

The leading term in A = b?c3. The corresponding term on R.H.S = | b?c®
o =1
Hence, A =(a-b)(b-c)(c—a)(ab+ bc +ca). Ans

B.20



2.9 Conjugate elements
Two equidistant elements lying on a line perpendicular to the leading diagonal are said to be
conjugate.
a b o
Inthe determinant |2 P2 G| a,bi; ag,ci;  bs,cy;arepairsof conjugateelements.
a; by C3
2.10 Special types of determinants

2.10.1 Orthosymmetric Determinant. If every element of the leading diagonal is the same
and the conjugate elements are equal, then the determinant is said to be orthosymmetric
determinant.

a h
h a
g f
2.10.2 Skew-Symmetric Determinant. If the elements of the leading diagonal are all zero

and every other element is equal to its conjugate with sign changed, the determinant is said to be
Skew- symmetric.

D = Q

0 —a -b
a 0 -—c
b ¢ 0

Property 1. A Skew-symmetric determinant of odd order vanishes.
Property 2. A skew-symmetric determinant of even order is a perfect square.

2.11 Application of determinants
Area of triangle. We know that the area of a triangle, whose vertices are (X, y,), (X,, Y,) and
(xs, y3) is given by

1
A= P (X1 (Y2 — Y3) = X2 (Y1 — Ya) + X3 (V1 — Y2)]
Note. Since area is always a positive quantity, therefore we always take the absolute value of
the determinant for the area.

Condition of collinearity of three points. Let A (x;, y,), B (X, ¥,) and C (x5, Y,) be three
points. Then,

A, B, C are collinear < area of triangle ABC =0
1 X Y1 1 T ¥ 1
< T X = =
2|2 Y2 1 0 < 1% Y2 =0 Proved.
X3 Y3 1 X3 Yy; 1
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Example 37. Using determinants, find the area of the triangle with vertices (- 3, 5), (3, — 6)
and (7, 2).

Solution. The area of the given triangle is

-3 5 1
A=23 =6 1|=3(-3(-6-2) =53 —7)+1(6 +42))
72l
=5 (24 +20 + 48) = 46 unit?,

Example 38. Using determinants, show that the points (11, 7), (5, 5) and (- 1, 3) are collinear.

Solution. The area of the triangle formed by the given points is

7o
A=-|5 5 1 =5(11(5—3)—7(5+1)+1(15+5))
-1 3 1

1
=522 -42+20) =0.

It follows that the given three points are lying on a straight line, that means, they are collinear.

Exercise 2.5
Using determinants, find the area of the triangle with vertices:

1. (2-7),(,3),(10,8). Ans. Area =95
2. (-1,-3),(2,4)and (3,-1). Ans. Area=11
3. 3.(1,-1),(2,4)and (-3,5). Ans. Area=13
4. Using determinants, show that the points (3, 8), (— 4, 2) and (10, 14) are collinear.
5. Find the value of a, so that the points (1, —5), (- 4, 5) and (a, 7) are collinear.
Ans. a=-5
6. Find the value of x, if the area of A is 35 square cms with vertices (x, 4), (2, —6), (5, 4).

Ans.x=-2,12
7. Using determinants find the value of k, so that the points (k, 2 — 2k), (- k + 1, 2k) and

1

(—4 -k, 6 —2 k) may be collinear. Ans. k:—l,z

8. Ifthe points (x, —2), (5, 2) and (8, 8) are collinear, find x using determinants. Ans.x=3
9. Ifthe points (3, — 2), (x, 2) and (8, 8) are collinear, find x using determinants. Ans.x=1

2.12 Rule for multiplication of two determinants
Multiply the elements of the first row of A; with the corresponding elements of the first, the
second and the third row of A respectively.

Their respective sums form the elements of the first row of AiA,. Similarly multiply the
elements of the second row of A; with the corresponding elements of first, second and third row of A,
to form the second row of A;A, and so on.

a, b ¢ o B v

Example 39. Find the product 3 b Gixla, B 1
a; by ¢ a; By 13
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Solution. Product of the given determinants

oy +biBy+Cy; a0, + by +Cry,  Aog + by + Ciys
a0y +byBy +Coyy A0y + DBy +Cy, 803 + D3 + Coys| Ans.
A0 + 03Py + Cayy Ag0, +bgP, + Gy, Agog + D3Py + Cays

Example 40. Prove that the determinant
2b;+c, c;+3a; 2a;+3b
2b,+c, c,+3a, 2a,+3b,
2b;+cy Ccy+3a; 2a; +3bg
is a multiple of the determinant
a by ¢
a b, ¢
a; by ¢4

and find the other factor.

2b;+c; c;+3a; 2a;+3b;

2b,+c, c,+3a, 2a,+3b,

2bg+c3 Ccy+3a; 2a3+3b,
a, by ¢ 0 21

Solution.

= a2 b2 CZ X 3 0 1 AnS

a; by ¢ |2 30
1 cos (B—a) cos(y —a)
Example 41. Prove that |€0S (& — PB) 1 cos(y —P)|=0
cos (w—7v) cos(B-17) 1

cosa sino O coso. Sino O
Solution. cosp sinB O|x|cosp sing 0|=0
cosy siny O cosy siny 0

cos? o + sin? o cosacosP + sinasinB  cosa.cosy + sinasiny
or cosPcosa + sinBsina. cos?p + sin?p cospcosy +sinPsiny =0
cosycoso +sinysino.  cosycosp + sinysinf cos? y+ sin?y
1 cos(B—a) cos(y— o)
or cos (o — B) 1 cos(y—B) =0 Proved
cos(ae—y) cos(B—1v) 1
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Miscellaneous MCQ Exercises
. . _[a b].. .
1. The determinant of a 2x2 matrix A = [C d] is given by:

(A)a+d

(B) ad - bc

(C)ab +cd

(D) ac - bd
Answer: (B) ad - bc

2. If the determinant of a square matrix is zero, then the matrix is:

(A) Singular

(B) Non-singular

(C) Invertible

(D) Identity matrix
Answer: (A) Singular

3. IfA = [i i] and det(A) = 10, then the value of x is:

(A)1

(B)2

()3

(D) 11
Answer: (D) 11

4. If det(A) =5, then the determinant of kA for a 3x3 matrix is:

(A) 5k3

(B) 5k2

(C) 5k*

(D) 5k
Answer: (A) 5k3

5.1f A is a 3x3 matrix such that det(A) = 7, then what is det(A™)?

(A7

(B) 1/7

(€0

(D) -7

Answer: (B) 1/7

1 2 3
4 5 6
7 8 9

6.1fA= then det(A) is:

(A)0
(B)1
(€2
(D)3
Answer: (B) 3

7. If det(A) = 3 and det(B) = 4 for two 2x2 matrices A and B, then det(AB) is:
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(A)7

(B) 12

©1

(D)o
Answer: (B) 12

8. The determinant of an identity matrix of any order is:

(A)0

(B)1

(©-1

(D) Depends on the order
Answer: (B) 1

9. If a row or column of a determinant is multiplied by a scalar k, then the determinant is:

(A) Unchanged

(B) Multiplied by k

(C) Multiplied by k" (where n is the order of the matrix)
(D) Multiplied by k™!

Answer: (C) Multiplied by k"

10. The determinant of a triangular matrix (upper or lower) is:

(A) The sum of diagonal elements

(B) The product of diagonal elements

(C) Always 0

(D) Always 1

Answer: (B) The product of diagonal elements
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Chapter 3

Matrices(l1)

3.1 Minors, Cofactors, Determinants and Adjoint of a matrix

Minors associated with elements of a square matrix

A minor of each element of a square matrix is the unique value of the determinant associated with

it, which 1s obtained after eliminating the row and column in which the element exists.
11 a12)

Az1 Az

Myy = Ay, Myp = Ay, My = Qg3 , My = ayy

ForaZXZmatrixA:(

ai; QA1 Qg3
Fora 3 X 3 matrix A = ( Az Ay a23)

31 Qzp Q33
Az1 Qg

a1y Qg
LR 33 —

M, = | M :|
11 s 12 a21 aZZ

A3z Qs A3z; Qs
Cofactors associated with elements of a square matrix

The cofactor of each element is obtained on multiplying its minor by (—1)*/.
Cij = (_1)i+jMij

Determinant of a square matrix

Every square matrix is associated with a determinant and is denoted by det (A4) or |A|.

Cl11 Cl12 s aln
21 a22 s a2n

det (4) = 4] = |

Apy Qpp - Qnn
Determinant of order n can be expanded by any one row or column using the formula
lA| = ie1ai C

A determinant of order 2 is evaluated as:

ij » Where Cj; is the cofactor corresponding to the element a;; .

Al = A1 Q12
|A| = a .| = G11822 — Q1202
21 Q22

A determinant of order 3 is evaluated as:
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a;; A1 Ag3
|A| = | Q21 Q22  Qy3| = Z;-lzl(—l)”']aile-j
a3; dzp; dgzg
_ A1 Qg2 A1 Qg2 A1 Q12
= |a21 a22| ~ G2 |a21 a22| 13 |a21 a22|

=11 (022033 = A32023) — A12(A21A33 — A31053) + A13(Az103; — A31027)
Note: A determinant may be evaluated using any row or column, value remains the same.
Properties of Determinants
e Value of a determinant remains unchanged if rows and columns are interchanged i.e.
|Al = |AT|
e If any two rows or columns are interchanged, the value of determinant is multiplied
by (1)
e The value of determinant remains unchanged if k times elements of a row (column) is
added to another row (column).

e If elements in any row (column) in a determinant are multiplied by a scalar k, then
value of determinant is multiplied by k. Thus, if each element in the determinant is
multiplied by k, value of determinant of order n multiplies by k™ i.e., |kA| = k™| A]|

e If A and B are square matrices of same order, then |AB| = |A||B]|

Adjoint of a square matrix

The adjoint of a square matrix A of order n is the transpose of the matrix of cofactors of each
element. If C;,, C;,, Cy5 ,..., Cnn be the cofactors of elements a,; , a;, , @;3 ..., Gnn Of the matrix
A. Then adjoint of A 1s given by

Cll Clz s Cln T Cll C21 s Cnl

ad](A) — C21 CZZ s CZn Clz CZZ s an

Cpn1 Cpz - Cnn Cin Cop o Cnn
3.2 Inverse of a Matrix
The inverse of a square matrix A of order n, denoted by A~ is such that

AA™Y = A7'A = I, where I, is an identity matrix of order n.

A matrix is invertible if and only if matrix is non-singular i.e., |A| # 0. There are many methods
to find inverse of a square matrix.

3.2.1 Inverse of a matrix using adjoint

Working rule to find inverse of a matrix using adjoint:
1. Calculate |A|
i. If|A| = 0, inverse does not exist
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ii. if [A] #0, gotostep2
adj(A)

2. Find adj(A) and compute the inverse using the formula A™! = o

1 3 3
Examplel Find inverse of the matrix ( 1 4 3)
1 3 4

1 3 3
Solution: Let A = ( 1 4 3)
1 3 4
Al =1(16-9)—-34—-3)+3B3-4)=17)-3(D)+3(-1) =1

Cll Clz s Cln T Cll C21 s Cnl

ad](A) — C21 CZZ s CZn — Clz CZZ s an

Coi1 Cpp ... Can Cin, Cop .o Cnn
C1 = (-1D*(16-9)=7 Co=(1P¢@U-3)=-1 Cz=-D*G-4H =1
C1=(1D%(12-9)=-3 Cp=0CD*A-3)=1 C(yp3= (-1)°B-3)=0
C3; = (-D*(9-12) = -3 Csp = (-1)°B-3)=0 C33 = (-1D°(4-3)=1

7 -1 1\7 7 -3 =3
~adj(4) = (—3 1 0) = (—1 1 0 )
-3 0 1 1 0 1

L adja 1 7 -3 -3 7 -3 -3
AT = A 1 -1 1 o)]=1-1 1 0
1 0 1 1 0 1

3.2.2 Inverse of a matrix by using Gauss-Jordan method

To find the inverse of a matrix using Gauss-Jordan method, we take an augmented matrix (A : I)
and transform it into another augmented matrix (I : A) using elementary row (column)

transformations.

Elementary row (column) transformations: As the name suggests, row (columns) operations
are executed on matrices according to certain set of rules such that the transformed matrix is

equivalent to the original matrix. These rules are:

e Any two rows (columns) are interchangeable i.e., R; <> R; or C; « (;

o All the elements of any row (column) can be multiplied by any non-zero number % 1.e.,

R; = kR;

e All the elements of a row (column) can be added one to one to corresponding scalar

multiples of another row (column) i.e., R; = R; + kR;
Working rule to find inverse of a matrix using Gauss-Jordan method:

1. Prepare an augmented matrix (4 : I)
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2. Using elementary row transformations make element (1,1) of the augmented matrix as 1,
and using this make all other elements in the 1% column zero.
3. Now make the element (2,2) as 1, using row transformations and remaining elements in
the 2™ column zero.
4. Continue the process until the augmented matrix is transformed to (/ : A7)
Note: (1) Do not apply row and column transformations to the same matrix while using
Gauss-Jordan method.

(11) While using column transformations make element (1,1) of the augmented  matrix
as 1, and using this make all other elements in the 1*' row zero and similarly proceed for other
TOWS.

(111) In the process of forming identity matrix, ensure that previously formed zeros and
ones are not altered while applying row (column) transformations. For this while making element
(2,2) as 1, do not use R; (C;) and while making element (3,3) as one neither use R; (C;) nor R,
(C2).

Example2 Find the inverse of the following matrices using Gauss-Jordan method

3 1 3 3 -1 2
(i)(3 1 4) (ﬁ)(z ~1 3)
4 1 3 -1 1 1

31 3
Solution: i) LetA=[3 1 4

4 1 3
3 1 3 1 0 0
Augmented matrix is: ( 31 4 :0 1 0)
4 1 3 0 0 1
Transforming element at (1,1) position to one
1 0 0: -1 0 1
R, » —R, +R, ( 31 4 : 0 1 0)
4 1 3 : 0 0 1
Making element at (2,1) and (3,1) positions as 0
10 0: -1 0 1
R, - R, —3R;,R; > R; — 4R, (0 1 4 : 3 1 —3)
01 3: 4 0 -3
Elements at (2,2) and (1,2) are already 1 and 0, so making element at (3,2) position to zero
10 0 : -1 0 1
R; - R; — R, (0 1 4 : 3 1 —3)
00 -1: 1 -1 0

Now transforming element at (3,3) position to one
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10 0: -1 0 1
R, > —R, 01 4: 3 1 -3

0O 0 1: -1 1 0
Element at (1,3) 1s 0, so Transforming element at (2,3) position to zero
10 0: -1 0 1
R, > R, — 4R, (0 1 0 : 7 =3 —3):(1:A‘1)
0o 0 1: -1 1 O

-1 0 1
AT = 7 -3 -3
-1 1 0

3 -1 2
(i)LetA=( 2 -1 3
-1 1 1

3 -1 2 1 0 O
Augmented matrix is: ( 2 -1 3 0 1 0)
-1 1 1 0 0 1
Transforming element at (1,1) position as 1
1 0 -1 :1 -1 0
R, >R, —R, (2 -1 3 : 0 1 0)
-1 1 1 :0 0 1

Transforming element at (2,1) and (3,1) positions as 0

1 O -1 : 1 -1 O
R2—>R2—2R1,R3—>R3+R1<0 -1 5 : -2 3 0)
0 1 0 : 1 -1 1
Transforming element at (2,2) position as 1
1 0 -1 : 1 -1 0
R, » —R, ( o 1 -5:2 =3 0)
0 1 0O 1 -1 1
Element at (1,2) is 0, so transforming element at (3,2) position to zero
1 0 -1 : 1 -1 0
R, > R; — R, (0 1 -5 : 2 =3 0)
0 O 5 @ -1 2 1
Now making element at (3,3) position 1
1 o0 -1 : 1 -1 0
Ry == Ry o 1 -5: 2 30
00 1 75 3§ 3

Now transforming elements at (1,3) and (2,3) positions 0
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4 3 1
1 0 0 5 5 s
R, >R, +Rs,R,»R,+5R; [ 0 1 0 1 -1 1])=0U:4"1)
o 0o 1: _r 2 12
5 5 5
2 3 1
5 5 5
A = 1 -1 1
_1 2 1
5 5 5

3.3 Solution of System of Linear Simultaneous Equations
Here we will be discussing some direct methods of solving a system of linear equations.

3.3.1 Matrix Method
Working rule to solve a system of equations using matrix method
1. Write the system of equations as AX = B

2. Calculate |A]
i. If|A| =0, system of equations can not be solved using matrix method
i.  if |A| # 0, goto step 3

3. Find adj(A) and compute the inverse using the formula A™! = _ad|i1 (IA)

4. Solution of the system of equations is given by X = A™'B
Example3 Solve the system of equations using matrix method
x+3y+2z=5
2x +4y — 6z =—-4
x+5y+3z=10
Solution: Let the system of equations be represented as AX = B

1 3 2 X 5

1 5 3 z 10
Al = 1(12+30)—2(9-10)+ 1(—18—=8) =18 # 0
Ci,=(1D*(12+30)=42 C,,=-136+6)=-12 Cs=(-1D*(10-4)=6
€1 = (_1)3(9 -10) =1 Cyp = (_1)4(3 -2)=1 Co3 = (_1)5(5 -3)=-2
(3 = (-1D*(=18-8) = —-26 Csp = (_1)5(_6 —4)=10 (33 = (-4 -6)=-2

42 =12 6\' 42 1 =26
~adj(4) = ( 1 1 —2) = (—12 1 10 )

26 10 =2 6 -2 =2

G 1 42 1 =26

A-1:L=—<—1z 1 10)

|A| 18
6 -2 =2



42 1 =26\/5 42(5) + 1(—4) — 26(10)
X=A"B= i<—12 1 10 )(—4) = —| —12(5) + 1(=4) + 10(10) | = 1_18<

18

6 -2 —2/\10 6(5) — 2(—4) — 2(10)

sx==-3,y=2,z=1

3.3.2 Gauss Elimination Method

Working rule to solve system of equations using Gauss Elimination method
Write the system of equations as AX = B
Write the matrix in augmented form as C = (A: B)
Reduce matrix A in C = (A: B) to echelon form using row transformations
Solve the system of equations AX = B by backward substitution method.

sl S

Example4 Solve the system of equations using Gauss Elimination method
x+3y+2z=5
2x +4y — 6z =—-4
x+5y+3z=10
Solution: Let the system of equations be represented as AX = B

1 3 2 x 5
A:<2 4 —6),X:<y> ,B=<—4)
1 5 3 z 10

1 3 2 5
Augmented matrix C = ( 2 4 -6 : —4)

1 5 3 10
Transforming element at (2,1) and (3,1) positions as 0

1 3 2 5
R, > R,—2R,,R; = R; — R, (0 -2 -10 : —14)

0 2 1 ¢ 5
Transforming element at (2,2) to one

1 3 2 : 5

0O 2 1 :5
Transforming element at (3,2) to zero

1 3 2 5
R3_)R3_2R2 0 1 5 . 7

0 0 -9 : —9
=~ Corresponding system of equations is given as
x+3y+2z=5 (D
4y +5z =7 (2

-9z=-9 .03

—54
36
18

)



Solving by back substitution
B)=z=1,usingz=1in2)=>y=2,usingy =2, z=1in D=>x = -3
~x =-=3,y =2,z = 11s the required solution of given system of equations

3.3.3 Gauss Jordan Elimination Method
Working rule to solve system of equations using Gauss Jordan Elimination method

1. Write the system of equations as AX = B

2. Write the matrix in augmented form as C = (A: B)

3. Apply elementary row transformations to reduce the matrix A in C = (A: B) to unit

matrix

4. Last column of the transformed matrix augmented matrix gives vector X.

Example5 Solve the system of equations using Gauss Jorden Elimination method
x+3y+2z=5
2x +4y — 6z =—-4
x+5y+3z=10

Solution: Let the system of equations be represented as AX = B

1 3 2 X 5
Az(Z 4 —6),X=<y> ,B:<—4)
1 5 3 z 10
1 3 2 ¢ 5
Augmented matrix C = ( 2 4 -6 : —4)

1 5 3 10
Transforming element at (2,1) and (3,1) positions as 0

1 3 2 5
R, > R,—2R,,R; = R; — R, (0 -2 -10 : —14)

0 2 1 ¢ 5
Transforming element at (2,2) to one

1 3 2 :5

0O 2 1 :5
Transforming elements at (1,2) and (3,2) to zero

~

1 0 -13 : -16
R, = R, —3R,,R; » R; — 2R, (0 1 5 7 )
o 0 -9 : =9
Transforming element at (3,3) to one
1 0 —-13 : -16
R; » R3/—9 (0 1 5 7)
o o 1 : 1

Transforming elements at (1,3) and (2,3) to zero
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1 0 O -3
R, » Ry +13R;,R, > R, — 5R; (0 1 0 : 2)
0O 0 1 : 1
~x =-=3,y = 2,z = 11s the required solution of given system of equations

3.4 Rank of a Matrix

The rank of a matrix A is the order of the highest ordered non-zero minor in A. It is denoted by

p(A).
Example6 Find the rank of the following matrices:

1 2 3

. (1 4 . (1 3 o .
(1)A—(3 7) (11)A—(3 9) (111)A—(1 4 2)
2 6 5

. . 1 4] _ ) _

Solut10n:(1)Here|3 7|——5;t0 ~ p(A) =2

. 1 3

(i1) Here |3 ol = 0 ~ pl4d)=1
1 2 3

(u)Here |1 4 2[=0 =~ p(A)+3
2 6 5

Next consider H i| =2#0 =~ p(4) =2

3.4.1 Rank of a matrix using Normal form
The normal form of a matrix is one of the following:

., (1,0), (In) , (1, 0) or (I(I)1 8) where I, is the identity matrix of order n.

0
Changing to normal form, n is the rank of the given matrix.

Example7 Find the rank of the following matrices by reducing them to normal form:

3 -3 4 13 45
(i)A=(2 -3 4) (ii)Az(l 2 6 7)

0 -1 1 1501
Solution: (1) Transforming element at (1,1) position to unity
. 1 1 -1 4/ 3
Applying R; — 3 Ry, wegetA~| o _3 4
0 -1 1

Transforming element at (2,1) position to zero

C.9



1 -1 4,
A~ 0 -1 4 / 3

0 -1 1
Transforming element at (1,2) and (1,3) position to zero

1 0 0
CZ—>CZ+61,C3—>C3—§C1 A~l0 -1 %4/,

0 -1 1
Transforming element at (2,2) position to one
1 0 0
R,>—R, A~l0 1 ~%,
0 -1 1
Transforming element at (3,2) position to zero
1 0 0
ReoRi+R, A~| 0 1 %3
0 o ~1/
Transforming element at (2,3) position 0

1 0 0

C3_)C3+iC2 A~ 0 1 0
° o 0o ~1
3

Transforming element at (3,3) position 1

RZ _)RZ _2R1

1 0 O
C; > —3C; A~ ( 0 1 0) Hence rank of the given matrix is 3.
0 0 1

1 3 45
(i1) Here A = (1 2 6 7)
1501
Transforming element at (2,1) and (2,2) position to zero

1 3 4 5

Applying R, > R, — R, ,R; > R; — R, we getA~<0 -1 2 2)
0 2 —4 —4

Transforming element at (1,2), (1,3) and (1,4) position O
1 0 0 O
CZ—>CZ—3C1,C3—>C3—4C1,C4—>C4—5C1A~<O -1 2 2)

0 2 -4 -4
Making element at (2,2) position 1



1 0 0 0
RZ_)_RZ A~ 0 1 _2 _2

0 2 —4 —4
Making element at (3,2) position O

10 0 O
R3 - R3 - ZRZ A ~ 0 1 _2 _2

00 0 O
Making element at (2,3) and (2,4) position 0

1 0 0 O
C; > C3+2C,,C > Cy+ 2C, A~<0 1 0 0)

0O 0 0 O
Hence rank of the given matrix is 2.

3.4.2 Rank of a matrix using Echelon form
Echelon Form: A matrix is said to be in Echelon form if:

(1) The number of zeros in succeeding row are greater than previous row
(1)  The first non-zero entry in each non-zero row 1s equal to unity.

Working rule: Transform the matrix to echelon form. The number of non-zero rows in echelon
form becomes the rank of the matrix.

Example8 Find the rank of the following matrices by reducing them to echelon form:
1 2 3 1 2 3 2

(i)Az(Z 4 7) (ii)Az(Z 3 5 1)
3 6 10 2 3 45

Solution: (1) Transforming elements at (2,1) and (3, 1) positions to zeros

Applylng RZ - RZ - 2R1 5 R3 - R3 - 3R1 WwW¢E get

1 2 3
A~ 0 0 1
0 0 1

Making element at (3,3) position 0

1 2 3
R3_)R3_R2A~ 0 0 1

0 0 0
Now the matrix is reduced to echelon form. Since the number of non-zero rows is 2, hence the
rank of the given matrix is 2.

(1) Transforming elements at (2,1) and (3,1) positions to zeros
Applylng RZ - RZ - 2R1 5 R3 - R3 - ZRl 5 w¢E get

1 2 3 2
A~{0 -1 -1 -3
0 -1 -2 1
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Making element at (2,2) position 1

1 2 3 2
RZ_)_RZ A~ 0 1 1 3

0 -1 -2 1
Making element at (3,2) position 0

1 2 3 2
R, >R;+R, A~l0 1 1 3

0O 0 -1 4
Making element at (3,3) position 1

1 2 3 2
R3_)_R3 A~ 0 1 1 3

o 0 1 —4
Now the matrix is reduced to echelon form. Since the number of non-zero rows is 3, hence the
rank of the given matrix is 3.

3.4.3 Linear Dependence and Independence of Vectors
The set of vectors X; X, X; ...,X,, 1s said to be linearly dependent if there exist scalars
C, C, Cy ..., Cpnotall zero, such that C; X, + C,X, + C3X; + - +C, X, = 0 And they are linearly
independent if €, X; + C, X, + C3X5 + - +C, X, =0
=>C~=0Vi=1,23,....n

Example9 Examine the following system of vectors for linear dependence. If dependent find the
relation between them:

OXi=[1 -1 1], X=[2 1 1]andXs=[3 0 2]

@ X=[1 2 3] andXo=[2 -2 6]

Solution: (i) Consider C;X; + C,X, + C3 X3 =0........... (1)
=>Ci[1 -1 1]+C[2 1 1]+GC3[3 0 2]=0
= C, +2C,+3C,=0

—C,+C,+0C, =0
C,+C+2C; =0

1 2 3\ /C 0
=>[-1 1 0]|{C]=]0
1 1 2/ \C 0
Applying R, - R, + Ry, R; & R; — R, , we get
1 2 3\ /C1 0
0 3 311G )=1(0
0 —1 =1/ \Cg 0

Applying R; = R; + §R2, we get
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1 2 3\/C 0
0 3 3][C]=]0
0 0 0/1\Cg 0

= C,+2C,+3C;=0
0C;+3C,+3C;=0
LetCy; =k = C,= -k and C;, = -k
Hence the given vectors are linearly dependent.
Putting these values in (1) , we get —kX; — kX, + kX3 =0
= -k(X,+X;—X3)=0
=X, +X,—X;=0
which is the required relation between them.
(1) Consider C,X; +C,X, =0 ........... (1)
=>Ci[1 2 3]+Cf2 -2 6]
=C,+2C,=0
2C; —2C,=0
3C; +6C,=0
= C;=0andC, =0
Hence the given vectors are linearly independent.

3.5 Consistency and Inconsistency of Linear System of Equations

Consider a;,x; + a;5X,+..... +a,,x, = b;
Ay1X1 + AupXxy+. . ... +a,,x, = b,
Ap1X1 T ApaXat. ... +an Xy = by,
This 1s the system of m equations in #» unknowns and it can be written in the form AX = B where
Ay Agp e e ain X1 b,
Cl21 a22 ...... azn XZ b2
A — a31 a32 ------ a3n , X — X3 , B — b3
A1 Az eee oo Amn Xp, b,

Here if b; = 0 Vi then system of equations is said to be homogeneous otherwise it is non-
homogeneous.
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Ay QAyp e Ay, by
[ PR PO Ay i by
The matrix C = [A: B] = | @31 Q32 - - 3 * D3 | s called augmented matrix.
L Q1 Qg e oo A b

3.5.1 Working Rule to find solution of Non-Homogeneous System of Equations
1. For the system of equations, AX = B, form an augmented matrix C = [A: B].
2. Find the ranks of matrix A and matrix C
1.If Rank of A #Rank of C, then the given system is inconsistent i.e., it has no solution.
i1.If Rank of A = Rank of € = Number of variables in the given system of equations, then
the system has a unique solution.
111.If Rank of A = Rank of C < Number of variables in the given system of equations, then
the system has infinitely many solutions.
3.5.2 Working Rule to find solution of Homogeneous System of Equations i.e.
AX=0
In case of homogeneous equations, b; = 0 Vi, therefore augmented matrix is not required.
Here we find the ranks of matrix A
i. If Rank of A = Number of variables in the given system of equations, then the system has
the trivial solution, i.e., x; = x, == x, =0
ii. If Rank of A 1is less than the number of variables in the given system of equations, then
the system has infinitely many solutions.
Example Show that the following system of equations is inconsistent.
x+2y+z =2
3x+y—2z=1
4x—-—3y—z=3
2x+4y+2z=5
Solution: Let the system of equations be represented as AX = B

1 2 1 y 2
(3 1 -2 _ 1
A=l4 -3 -1 ’X‘<y> B=1 3
2 4 2 z 5

Transforming elements at (2,1), (3,1) and (4,1) positions to zeros
Applylng RZ - RZ - 3R1 5 R3 - R3 - 4R1, R4_ - R4_ - 2R1, WwW¢E get

1 2 1
0 -5 =5
A~l g —11 -5
0 0 0
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1 2 3
Now matrix A has a non-zerominor [0 -5 —=5[{=-30
0 —-11 -5
~ Rank of matrix A 1s 3
1 2 1 2
Again C = [A:B] = 3.1 =21
4 -3 -1 : 3

2 4 2 : 5
Applylng RZ - RZ - 3R1 5 R3 - R3 - 4R1, R4_ - R4_ - 2R1, WwW¢E get

1 2 1 : 2
c=[aB]~[0 5 -5 -5
0 —-11 -5 : =5
o 0 o0 : 1
2 1 2
[Cl=1]|-5 -5 —=5|+0=2(0)+5(=5+10)—11(=5—10) = 190
~11 -5 =5

-~ Rank of matrix C = [A: B]is 4

Hence the given system of equations is inconsistent.
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Exercise

MCQ
1. The rank of a matrix is:

A
B
C
D

The number of nonzero rows in its row echelon form
The number of zero rows in its row echelon form

(A)

(B)

(C) The number of columns in the matrix

(D) The determinant of the matrix
Answer: (A)

2. A square matrix is invertible if and only if:

A) Tts determinant is zero
B

) Tts rank is equal to its order
C) Tt has at least one zero row
)

D) It is a diagonal matrix

(
(
(
(

Answer: (B)
3. The inverse of a matrix A exists if:

A
B
C
D

rank(A) =0
det(A) =0
rank(A) = n, where A is an n X n matrix

None of the above

(A)
(B)
(©)
(D)

Answer: (C)
4. The rank of a 3 x 3 identity matrix is:

A
B
C

(
(
(
(D

)0
) 1
) 2
)3

Answer: (D)



3.

8.

If A is a singular matrix, then:

(A) A is invertible

(B) det(A) =0

(C) A is diagonalizable

(D) A has full rank

Answer: (B)

The rank of an m X n matrix is at most:
(A) m+n

(B)
(C) max(m,n)
)

(D
Answer: (B)

min(m, n)

mXn

The inverse of a 2 X 2 matrix [Z Z] is given by:
(A) adibc

1 -CL C
(B) ad-+bc _b d:|

[a —c
(©) ﬁ_—b d]

1
(D) ad-+be c a

Answer: (A)

If a matrix has two identical rows, then its determinant is:

A
B
C
D

Nongzero
Zero
One

None of the above

— T e e

(
(
(
(

Answer: (B)

The inverse of a matrix A satisfies:

(A) AA~1 =0
(B) AA~1 = A
(C) AA 1 =1
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(D) A~ tA=0

Answer: (C)
10. The rank of a zero matrix is:
(A) 0
(B) 1
(C) Equal to the number of columns
(

C
D

—_— T D

Equal to the number of rows

Answer: (A)

11. If A is an n X n invertible matrix, then its rank is:

(A) 0
(B) n
(C)n—1
(

None of the above

C
D

—_— T D

Answer: (B)

12. A matrix is invertible if:

(A)
(B)
(C) Tt has full rank
(D)

D) It has at least one zero row

It is singular

It has linearly dependent rows

Answer: (C)
13. If the determinant of a square matrix is nonzero, then:
The matrix is singular

The matrix is invertible

The rank of the matrix is less than its order

(A
(B
(C
(D

—_— T D

None of the above

Answer: (B)
14. The rank of an upper triangular matrix is:

The number of nonzero diagonal elements

(A
(B) The number of zero diagonal elements
(
(

C) Always equal to the order of the matrix

D) None of the above

—_— T D
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Answer: (A)
15. If A is an invertible matrix, then (A=1)~! is:

A
B
C
D

(A) A

(B) AT
(C) A™2
(

NN N

None of the above

Answer: (A)

Short answer questions

1. Given a square matrix A, what condition must A satisfy to have an in-
verse?

1
2. Compute the rank of the matrix A = |4
7

co Ut N
OO W

3. If A and B are invertible matrices of the same order, is AB always invert-
ible? Justify your answer.

4. If the rank of an m X n matrix A is equal to the smaller of m or n, what
can you conclude about A7

5. Find the inverse of the matrix A = [2 3] , if it exists.

1 4

Long answer questions

1. Inverse of a Matrix: Given a square matrix A, define what it means
for A to be invertible. Derive the formula for the inverse of a 2 x 2 matrix
and provide an example to illustrate the process of finding the inverse.

2. Rank of a Matrix: Define the rank of a matrix. Explain the concept of
row rank and column rank and prove that they are always equal. Also,
discuss the importance of rank in determining the solution of a system of
linear equations.

3. Finding the Inverse Using Elementary Row Operations: Describe
the procedure for finding the inverse of a matrix using elementary row
operations. Apply this method to compute the inverse of the matrix

o

if it exists.
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4. Rank and Linear Dependence: Explain the relationship between the
rank of a matrix and the linear dependence of its rows and columns. Given
the matrix

1
B=|4
7

co Ut N
OO W

determine its rank and justify your answer.

5. Applications of Matrix Inverse: Discuss the applications of the inverse
of a matrix in solving systems of linear equations. Use the inverse matrix
method to solve the system:

204+ 3y =5
dx+y =26
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Chapter 4

Systems of Linear Equations

4.1 Introduction:

Systems of linear equations play an important and motivating role in the subject of linear
algebra. In fact, many problems in linear algebra reduce to finding the solution of a system of
linear equations. Thus, the techniques introduced in this chapter will be applicable to abstract
ideas introduced later. On the other hand, some of the abstract results will give us new insights

into the structure and properties of systems of linear equations.

4.2 Systems of Linear Equations in Two Variables:

Linear systems are a fundamental part of linear algebra, a subject used in most
modern mathematics. Computational algorithms for finding the solutions are an important part of
numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer
science, and economics. A system of non-linear equations can often be approximated by a linear
system, a helpful technique when making a mathematical model or computer simulation of a
relatively complex system.

To establish basic concepts of Linear Systems, let’s consider the following simple
example: If 2 adult tickets and 1 child ticket cost 32, and if 1 adult ticket and 3 child tickets cost
36, what is the price of each?

How to find it ?

Let: x = price of adult ticket

y = price of child ticket
Then: 2x +y = 32
x + 3y = 36

Now we have a system of two linear equations in two variables. It is easy to find
ordered pairs (X, y) that satisfy one or the other of these equations. For example, the ordered pair
(16, 0) satisfies the first equation but not the second, and the ordered pair (24, 4) satisfies the
second but not the first.

To solve this system, we must find all ordered pairs of real numbers that satisfy both

equations at the same time. In general, we have the following definition:
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Systems of Linear Equations in Two Variables: Systems of Two Linear Equations in Two
Variables Given the linear system

ax + by = h

cx +dy =k
where a, b, ¢, d, h, and k are real constants, a pair of numbers x = x, and y = y, also written as
an ordered pair (x, ,y,) is a solution of this system if each equation is satisfied by the pair. The set
of all such ordered pairs is called the solution set for the system. To solve a system is to find its

solution set.

A system of linear equations is consistent if it has one or more solutions and inconsistent if
no solutions exist. Furthermore, a consistent system is said to be independent, if it has exactly one
solution (often referred to as the unique solution) and dependent, if it has more than one solution.

Two systems of equations are equivalent if they have the same solution set.

Possible Solutions to a Linear System: The linear system
ax + by = h
cx +dy =k
must have (i) Exactly one solution (Consistent and independent)
or
(i1) No solution (Inconsistent)
or
(iii) Infinitely many solutions (Consistent and dependent)
There are no other possibilities.
We will consider three methods of solving such systems:
1. Graphing,
2. Substitution,
3. Elimination by addition.
Each method has its advantages, depending on the situation.

Graphing: Recall that the graph of a line is a graph of all the ordered pairs that satisfy the
equation of the line. To solve the ticket problem by graphing, we graph both equations in the same
coordinate system. The coordinates of any points that the graphs have in common must be solutions

to the system since they satisfy both equations.
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» Example: (Solving a System by Graphing) Solve the ticket problem by graphing:

2x +y = 32

x + 3y = 36
Solution: An easy way to find two distinct points on the first line is to find the x and y intercepts.
Substitute y = 0 to find the x-intercept, 2x = 32, so x = 16, and substitute x = 0 to find the
y-intercept y = 32. Then draw the line through (16, 0) and (0, 32). After graphing both lines in the
same coordinate system (Fig. 1), estimate the coordinates of the intersection point:

a1

x = 12, Price of Adult ticket

y = 8, Price of Child ticket
» Exercise: Solve each of the following systems by graphing:

Q) x — 2y =2 2 x+ 2y = -4 (3 2x + 4y = 8

x+y =25 2x + 4y = 8 x + 2y =4

Substitution: Now we review an algebraic method that is easy to use and provides exact
solutions to a system of two equations in two variables, provided that solutions exist. In this
method, first we choose one of two equations in a system and solve for one variable in terms of the
other. (We make a choice that avoids fractions, if possible.) Then we substitute the result into the
other equation and solve the resulting linear equation in one variable. Finally, we substitute this

result back into the results of the first step to find the second variable.

» Example: (Solving a System by Substitution) Solve by substitution:
S5x +y =4
2x — 3y =5
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Solution: Solve either equation for one variable in terms of the other; then substitute into the

remaining equation. In this problem, we avoid fractions by choosing the first equation and solving

for y in terms of x as-

5 +y =4 (Solve the first equation for y in terms of x.)
— y =4 — 5x (Substitute into the second equation.)
Now, 2x — 3y =5 (Second equation)
—2x —3(4 —5x)=5 (Solve for x, i.e. putting the value of y)
— 2x — 12 + 15x =5
— 17x = 17
- x =1

Now, replace x with1iny = 4 — 5x tofind y:
y =4 — 5x
- y=4-51) (Replace x with 1)
— y = —1

Hence the solutionisx = 1, y = —1or (1, -1)

P Exercise: Solve by substitution:
3x + 2y = =2
2x —y = —6
Elimination by Addition: The methods of graphing and substitution both work well for
systems involving two variables. However, neither is easily extended to larger systems. Now we
turn to elimination by addition. This is probably the most important method of solution. It readily
generalizes to larger systems and forms the basis for computer-based solution methods.
To solve an equation such as 2x — 5 = 3, we perform operations on the equation until we
reach an equivalent equation whose solution is obvious.
2x =5 =23 (Add 5 to both sides)
— 2x = 8 (Divide both sides by 2.)
- x =4
Operations That Produce Equivalent Systems: A system of linear equations is transformed into an
equivalent system if
(1) Two equations are interchanged.
(2) An equation is multiplied by a nonzero constant.
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(3) A constant multiple of one equation is added to another equation
Any one of the above three operations in can be used to produce an equivalent system, but the
operations that will be of most use to us now we discus. The use of above rule is best illustrated by
examples.
» Example: (Solving a System Using Elimination by Addition) Solve the following system using
elimination by addition:
3x — 2y =8

2x + 5y = —1

Solution: We use above rule to eliminate one of the variables, obtaining a system with an obvious

solution:

2x + 5y = =1 ............. (i1)
Multiply the equation (i) by 5 and the equation (ii) by 2 we get,
5(3x — 2y) = 5(8)
2(2x + 5y) = 2(—1)
ie., 15x — 10y = 40
4x + 10y = =2
Add the top equation to the bottom equation and eliminating the y terms we get,
19x = 38
Divide both sides by 19, X =2
Knowing that x = 2, we substitute this number back into either of the two original equations (we
choose the second) to solve for y:
2(2) + 5y = -1
— 5y = =5
— y = -1
Hence the solutionisx = 2, y = —1or (2,-1)
» Exercise: Solve the following system using elimination by addition:
5x — 2y = 12
2x + 3y =1

Applications: Many real-world problems are solved readily by constructing a mathematical model
consisting of two linear equations in two variables and applying the solution methods that we have

discussed. We shall examine two applications in detail.
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P Exercise: Jasmine wants to use milk and orange juice to increase the amount of calcium and
vitamin A in her daily diet. An ounce of milk contains 37 milligrams of calcium and 57 micrograms
of vitamin A. An ounce of orange juice contains 5 milligrams of calcium and 65 micrograms of
vitamin A. How many ounces of milk and orange juice should Jasmine drink each day to provide

exactly 500 milligrams of calcium and 1,200 micrograms of vitamin A?

Most linear systems of any consequence involve large numbers of equations and variables. It
is impractical to try to solve such systems by hand. In the past, these complex systems could be
solved only on large computers. Now there are a wide array of approaches to solving linear systems,
ranging from graphing calculators to software and spreadsheets. In the rest of this chapter, we
develop several matrix methods for solving systems with the understanding that these methods are
generally used with a graphing calculator. It is important to keep in mind that we are not presenting
these techniques as efficient methods for solving linear systems by hand. Instead, we emphasize
formulation of mathematical models and interpretation of the results, two activities that graphing

calculators cannot perform for you.
4.3 linear systems:

In mathematics, a system of linear equations (or linear systems) is a collection of two or
more linear equations involving the same variables. For example, linear equations involving the

variables x, y, z may be in the form-

x+y+z =6
y+ 3z =11
x-2y+z=0

Each of the equations, from the systems of linear equations are called linear equation. So,
Systems of linear equations can be considered as a collection of linear equations.

A linear equation in variables x;, x,, x5, ..., x, IS an equation of the form
a;xq, +azx, ++ap,x, = b,

where a, ,a,,...,a, and b are constant real complex numbers. The constant a; is called the
coefficient of x; and b is called the constant term of the equation.

A system of linear equations (or linear system) is a finite collection of linear equations
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in same variables. For instance, a linear system of m equations in n variables x,,

X5, X3, ..., Xy Can be written as-

aj1Xq + a12x2+. R AnXpy = bl
a21x1 + a22x2+. . aann = bz
AmiX1 + QX+ oo+ QX = by,

[ linear system (1.1) ]

A solution of a linear system (1.1) is a tuple (s3, S»,

equation a true statement when the values s;, Sy, ...

..., Sp ) of numbers that makes each

,Sn are substituted for x,, x3, ..., x5,

respectively. The set of all solutions of a linear system is called the solution set of the

system.

Theorem: Any system of linear equations has one of the following exclusive conclusions.

(1) No solution.

(2) Unique solution.

(3) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution and is said to be

inconsistent if it has no solution.

4.4 Geometric interpretation:

The following three linear systems

() 2x,
(a)...5 (i0) 2xq
(iii) x,
(i) 2x;
(b)...1 (ii) 2x4
(iii) x4
(1) 2xq

©)...{ (i) 4x,
(iii) 6x

+x5
—2Xy

+x,
—2x,

+Xx,
+2x,
+3x,
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Have no solution, a unique solution, and infinitely many solutions, respectively. See the

below Figure.

o/

X,

[

Figure 1: No solution, unique solution, and infinitely many solutions.

Note: A linear equation of two variables represents a straight line in R% A linear equation of
three variables represents a plane in R®. In general, a linear equation of n variables represents a

hyper-plane in the n-dimensional Euclidean space R".

4.5 Solution of linear equations by determinants (Cramer’s rule):

In linear algebra, Cramer’s rule is an explicit formula for the solution of a system of linear
equations with as many equations as unknowns, valid whenever the system has a unique solution. It
expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices
obtained from it by replacing one column by the column vector of right-sides of the equations. It is
named after Gabriel Cramer, who published the rule for an arbitrary number of unknowns in 1750,
although Colin Maclaurin also published special cases of the rule in 1748 and possibly knew of it as
early as 1729.

Cramer's rule, implemented in a naive way, is computationally inefficient for systems of

more than two or three equations
Let us solve the following equations.
a;x + by +cz=d1
a,x + b,y +c,z = dp

a3 x +bzy + c3z = d3
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Let us write these equations in the form AX = B.

a1 bl Cl X dl
[az b, C2] [3’] = dz]
as bs c3llz d;
Let,
ai b1 c1 D1 b1 c1 ai D1 1 ai b1 D1
D=lap by cp|and Dy =[Dy by c2|, D2=ap D2 c2|, D3=|az by D3
a3 b3 c3 D3 b3 c3 a3 D3 c3 a3 b3 D3
Then, X = &’ , y = &, , 7 = &
D D D

» Example: Solve the following system of equations using Cramer’s rule:
5x-7y +z = 11
6x-8y-z = 15
3x + 2y -6z =7
Solution: The given systems of linear equations are,
5x -7y +z = 11
6x—-8y-z = 15

3x + 2y -6z =7

5 —7 1
Here, D =|6 —8 —1|=>5(48+2)+7(-36+3)+1(12+24) =55 (*0)
3 2 -6
11 -7 1
D,=|15 —8 —1|=11(48+2)+7(-90+7)+1(30+56)=55
7 2 —6
5 11 1
D,=|6 15 —1|=5(-90 + 7)-11(- 36 + 3) + 1(42- 45) =- 55
3 7 —6
5 —7 11
D:=|6 —8 15|=5(-56-30) + 7(42-45) + 11 (12 + 24) =- 55
3 2 7
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Hence, x=====1, |,

» Example: Solve the following system of equations using Cramer’s rule:
x+y+z=6
y+ 3z =11
x-2y+z =20
Solution: The given systems of linear equations are,
x+y+z=6
y+ 3z =11
x-2y+z=0

Let us write these equations in the form AX = B.

1 1 1|rx 6
0 1 3[}/]:11
1 -2 11tz 0
1 1 1
Now,D=|0 1 3|=11+6)—-1(0—-3)+1(0—-1)=7+3-1=9+#0
1 -2 1

As, D #0. So the given system of equations has a unique solution.

Also,
6 1 1
D;=11 1 3|=6(1+6)—1(11-0)+1(-22-0)=42-11-22=9
0 -2 1
1 6 1
D,=10 11 3|=111-0)-6(0—-3)+1(0—-11)=11+18-11=18
1 0 1
1 1 6
D;=10 1 11|=10+4+22)—-1(0—-11)+6(0—-1)=22+11—-6=27
1 -2 0
D, 9 D, 18 Dy _ 27
Hence, x====-=1, , y==2==—=2, , z==2===3
D 9 D 9 D 9
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P Exercise: Solve, by determinants, the following set of simultaneous equations
5x -6y +4z=15
7x+4y —-3z=19
2X+y+6z2=46

» Exercise: Solve the following system of equations using Cramer’s Rule:
2X — 3y+4z =-9
—3X+4y+2=-12
4x -2y —-3z=-3

» Exercise: The sum of three numbers is 6. If we multiply the third number by 2
and add the first number to the result, we get 7. By adding second and third
numbers to three times the first number we get 12. Use determinants to find the
numbers.

4.6 Matrix Inversion Method

This method can be applied only when the coefficient matrix is a square matrix and non-
singular. Consider the matrix equation, AX = B...... (1)
Where A is a non-singular square matrix and. Since A is non-singular, A~ exists and have the
properties A" A= AA™! = I. Pre-multiplying both sides of (i) by A, we get A™' (AX)=A"'B.
Thatis, (A~ A) X = A'B. Hence, we get X = A"'B.
» Example : Solve the following system of equations, using matrix inversion method:
2x1 + 3x, + 3x, = 5,
X1 — 2%y + x; = —4,
3%y — X5 — 2x, = 3

Solution: The matrix form of the system is AX = B, where

2 3 3 X1 5
A=|1 =2 11, X=|X2], B=[-4].
3 -1 -2 X3 3
2 3 3
Now detA={[1 -2 11=24+1)—-3(-2-3)+3(-14+6)=10+15+15=40%#0
3 -1 -2
So, A exist.

D.11



-1 ; .
Now, A™ = Y (adj A)

1 1
= —|-(=6+3) +(-4-9) —(-2-9)| =—|5 -13 1

+(4+1) —(=2-3) +(=1+6)] [5 3 9]
+(3+6) —(2-3) +(—4-23) 5 11 -7

Then applying X = A™1B, we get

X1 . [5 3 915
X=[X2 =% 5 —-13 11(|-4
X3 5 11 -=-7113

L [25 — 12 + 27]

= 25+52+3

|25 — 44 — 211

) 40 1]

=% 80| =12

—40 —1.

So, the solutionis x;=1,x, =2, X3 =-1.
» Exercise: Solve the following equations by matrix inversion method:

xty+z=4
2x—y+3z=1
3x+2y—z=1

4.7 Matrices of a linear system:
In solving systems of equations using elimination by addition, the coefficients of the
variables and the constant terms played a central role. The process can be made more efficient for

generalization and computer work by the introduction of a mathematical form called a matrix. A

matrix is a rectangular array of numbers written within brackets.

Matrix notation in a spreadsheet: Matrices serve as shorthand for solving systems of linear
equations. Associated with the system

2x — 3y =5

X+ 2y = -3

are its coefficient matrix, constant matrix, and augmented matrix:
[2 —3] [ 5 ] [2 -3 | 5 ]
1 2 -3 1 2 | -3
Coefficient matrix Constant matrix Augmented matrix
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Note that the augmented matrix is just the coefficient matrix, augmented by the
constant matrix. The vertical bar is included only as a visual aid to separate the
coefficients from the constant terms. The augmented matrix contains all of the
essential information about the linear system—everything but the names of the

variables.
For ease of generalization to the larger systems in later sections, we will change

the notation for the variables in above system to a subscript form. That is, in place of

x and y, we use x; and x,, respectively, and system is rewritten as-

In general, associated with each linear system of the form
a;1%; + agx; = by
ay1%1 + A%y = b,

a;; Az | b1]

The Augment matrix of the system is:
Az Q2 | b

This matrix contains the essential parts of above system of linear equations. Our objective is
to learn how to manipulate augmented matrices in order to solve system, if a solution exists. The
manipulative process is closely related to the elimination process discussed in 4.2.

Now we consider more generalized system-

Definition: The augmented matrix of the general linear system (1.1) is the table

A1 Q2 e Qin | bp]
dz1 Gz .. Gan | by
|
| .
lAm1 Amz o Amn | bm.

and the coefficient matrix of (1.1) is

a1 ai; Ain
| axq as, arn |
lel aAm2 amn|
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Recall that two linear systems are said to be equivalent if they have the same solution set.
We used the operations listed below to transform linear systems into equivalent systems:
(1) Two equations are interchanged.
(2) An equation is multiplied by a nonzero constant.

(3) A constant multiple of one equation is added to another equation.

Paralleling the earlier discussion, we say that two augmented matrices are row
equivalent, denoted by the symbol ~, placed between the two matrices, if they are
augmented matrices of equivalent systems of equations. How do we transform

augmented matrices into row-equivalent matrices?
4.8 Elementary row operations:

In mathematics, an elementary matrix is a square matrix obtained from the application of a
single elementary row operation to the identity matrix. The elementary matrices generate the
general linear group GL,(F) when F is a field. Left multiplication (pre-multiplication) by an
elementary matrix represents elementary row operations, while right multiplication (post-

multiplication) represents elementary column operations.
Definition: There are three kinds of elementary row operations on matrices:

(a) Adding a multiple of one row to another row;
(b) Multiplying all entries of one row by a non-zero constant;
(c) Inter changing two rows.

There are three types of elementary matrices, which correspond to three types of row operations
(respectively, column operations):

Row switching

A row within the matrix can be switched with another row.
Row multiplication

Each element in a row can be multiplied by a non-zero constant. It is also known
as scaling a row.
Row addition

A row can be replaced by the sum of that row and a multiple of another row.
Definition: Two linear systems in same variables are said to be equivalent if their solution sets are
the same. A matrix A is said to be row equivalent to a matrix B, written A~B, If there is a

sequence of elementary row operations that changes A to B.
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Theorem: If the augmented matrices of two linear systems are row equivalent, then the two

systems have the same solution set. In other words, elementary row operations do not change

solution set.

4.9 Row echelon forms:

Definition: A matrix is said to be in row echelon form if it satisfies the following two conditions:

(i)
(i)

All zero rows are gathered near the bottom.

The first non zero entry of a row, called the leading entry of that row, is a head of

the first non-zero entry of the next row.

A matrix in row echelon form is said to be in reduced row echelon form if it satisfies two more

conditions:
()
(i)

A matrix in (reduced) row echelon form is called a (reduced) row echelon matrix.

The leading entry of every non zero row is 1.

Each leading entry 1 is the only non-zero entry in its column.

Note: Sometimes we call row echelon forms just as echelon forms and row echelon matrices as

echelon matrices without mentioning the word “row.”

4.10 Row echelon form pattern:

The following are two typical row echelon matrices.

Do oo QO e

e

o T s Y s R s I

oo OO ¥ ¥

s

[ R e I e B e

DD D e

[ s B

jon Bl el S

oo o o o o

oo o o o e

e [ e [ e I e B e I

o o O o O %

oo oo e

oo O o ¥ *

oo O e

B

o O O %

S

oo e

where the circled e represent arbitrary non-zero numbers, and the stars * represent arbitrary

numbers, including zero.
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The following are two typical reduced row echelon matrices.

1 0 = *« 0 %= 0 =* = 0 1 = = 0 = 0 0 0
0 1 = = 0 %= 0 = =+ 0O 0 0 0 1 = 0 0 0
0 0 0 0 1 = 0 =#* =« 0O 0 0 0 0 0 1 0 0
0O 0 0 0 0 0 1 =% = 0O 0 0 0 0 0 0 0 1
0O 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0

I 0O 0 0 0 0 0 0 0 0 ] I 0O 0 0 0 0 0 0 0 0 |

Definition: If a matrix A is row equivalent to a row echelon matrix B, we say that A has
the row echelon form B ; if B is further are deduced row echelon matrix, then we say

that A has the reduced row echelon form B.

4.11 Row reduction algorithm:

Definition: A pivot position of a matrix A is a location of entries of A that corresponds to a
leading entry in a row echelon form of A. A pivot column (pivot row) is a column (row) of

A that contains a pivot position.
Algorithm (Row Reduction Algorithm):

(1) Begin with the left most non-zero column, which is a pivot column; the top entry is pivot

position.

(2) If the entry of the pivot position is zero, select a nonzero entry in the pivot column,

interchange the pivot row and the row containing this nonzero entry.

(3) If the pivot position is nonzero, use elementary row operations to reduce all entries below
the pivot position to zero, (and the pivot position to 1 and entries above the pivot position to

zero for reduced row echelon form).

(4) Cover the pivot row and the rows above it; repeat (1)-(3) to the remaining sub-matrix.

Theorem: Every matrix is row equivalent to one and only one reduced row echelon matrix. In

other words, every matrix has a unique reduced row echelon form.
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4.12 Solving linear system:
» Example: Find all solutions for the linear system

Xp +2X—X%X3 =1
2X1 + Xo + 4X3 =2

3X1 + 3X2 + 4X3 =1

Solution: Perform the row operations:

(1 2 —1| 17 Ry—2R,
2 1 4| 2 ~

|33 4| 1] Rs—3R,
1 2 —1| 1] R;+Rs
01 —2| 0 ~

|0 0 1|-2] Ro+2Rs
10 0| 7]

01 04

(00 1|-2]

The system is equivalent to

i =
Ta =
T3 =
which means the system has a unique solution.
» Exercise: Find all solutions for the linear system
X1 X2 Xz X4 = 2
X1 Xo +Xz X4 = 0
4, - 4%, + 4X3 = 4
—2X; +2Xp —2X3 +X4 = -3

» Exercise: Find all solutions for the linear system

2X1 +Xo—X%X3 =1
X1+3X2+4X3=2

X1 +3Xo+4x3=1

L
o O

(1 2 1| 17 (-1/3)Rs
0 -3 6| 0 ~
0 -3 7|-2 | Rs—Ry
1 2 0]-1
T ol 4| Bi-2R
0 1]-2] -
7
—4
—2
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Theorem: A linear system is consistent if and only if the row echelon form of its augmented

matrix contains no row of the form

[0 ,.., O | b],whereb#0
» Example: Solve the linear system whose augmented matrix is :
o0 1 -1 2 1 | 0
A= 36 0 3 -3 2 | 7
“ftr 2 o 1 -1 o0 | 1
2 4 -2 4 -6 -5 | —4
Solution: Interchanging Row 1 and Row 3, we have
12 0 1 -1 0 | 1
36 0 3 -3 2 | 7
0 0 1 -1 2 1 ] 0
2 4 -2 4 -6 -5 | -4
R, =R, — 3R,
Rlll- = R4_ - 2R1
12 0 1 -1 0 | 1
oo 0 o0 o0 2 | 4
0 0 1 -1 2 1 ] 0
0 0 -2 2 -4 -5 | -6
RZHR3
12 0 1 -1 0 | 1
00 1 -1 2 1 | 0
o 0 o 0 0 2 | 4
0 0 -2 2 —4 -5 ] -6
R, = R, + 2R,
120 1 -1 0 | 1
001 -1 2 1 | 0
0 00 0 0 2 | 4
0 00 0 0 -3 ] -6
Rz =-Rs
120 1 -1 0 | 1
0 01 -1 2 1 ] 0
0 o0 0 o0 1 | 2
0 00 0O 0 -3 ] -6
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R‘Il- = R4_ +3R2

120 1 -1 0| 1
0 01 -1 2 1| O
0 0 0 O 0O 1 | 2
0 0 0 O 0O 0 | O
Ré = R2 _R3
120 1 -1 0 | 1
o 01 -1 2 0 | -2
0 00 O 0o 1 | 2
0 0 0 O 0 0 | O

Then the system is equivalent to,
Xy + 2%, + X4 — X5 =1
X3 — X4 + 2x5 = —2
Xg = 2
This is same as,

X1 =1—2%x, — X4 + X5

The unknowns x,, x, and x5 are free variables. Set x, = 1, X4 =y, X5= C3, Where Cy, Cp, C3 are
arbitrary. The general solutions of the system are given by-

.

1 =1—2¢] — o + 3
I =
T3 = —2+ 2 — 2¢3
< ry = Cao
Iy = C3
Tg = 2

So, the system has infinitely many solutions.

Definition: A variable in a consistent linear system is called free if its corresponding column in the
Coefficient matrix is not a pivot column.

Theorem: For any homogeneous system Ax = 0,
#{variables}= #{pivot positions of A} + #{free variables}
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4.13 Applications:

Systems of linear equations are used in various real-life applications across different fields.

Here are some examples:

1. Business and Economics

o Cost and Revenue Analysis: A company wants to determine the break-even point where
total cost equals total revenue.
Example: € = 50x + 2000C and R = 80x

Solving C = R helps determine the number of units needed to break even.

e Investment and Budgeting: If a person invests in two stocks with different rates of return,

they can use a system of equations to allocate their investment for maximum profit.
2. Engineering and Science

e Electrical Circuits (Kirchhoff’s Laws): In circuit analysis, multiple loops with resistors
and voltage sources create simultaneous equations that engineers solve to find current
values.

e Mixture Problems in Chemistry: Determining the correct proportions of two solutions

with different concentrations to get a desired mixture. Example:

x +y = 100 (Total volume of solution)

0.2x + 0.5y = 0.35(100) (Total concentration equation
3. Agriculture and Farming

e Crop Planning: Farmers may use equations to decide how much land to allocate for
different crops while considering constraints like water supply and cost.
e Animal Feed Optimization: Determining the right mix of grains and proteins for livestock

based on nutritional requirements.

D.20



Exercise - 4

Solve each of the following systems by graphing:
@ x -2y =2 ) x +2y = -4 (c)2x + 4y = 8
x+y=25 2x + 4y = 8 x+ 2y =4
Solve by substitution:
3x + 2y = =2
2x —y = —6

Jasmine wants to use milk and orange juice to increase the amount of calcium and vitamin A
in her daily diet. An ounce of milk contains 37 milligrams of calcium and 57 micrograms of
vitamin A. An ounce of orange juice contains 5 milligrams of calcium and 65 micrograms of
vitamin A. How many ounces of milk and orange juice should Jasmine drink each day to
provide exactly 500 milligrams of calcium and 1,200 micrograms of vitamin A?

. Solve, by determinants, the following set of simultaneous equations
5x-6y + 4z =15
7x +4y- 3z =19
2x + y+6z=46
. Solve the following system of equations using Cramer’s Rule:
2x-3y + 4z=-9
-3x+4y + 2=-12
4x-2y-3z =-3

Solve the following equations by matrix inversion method:

Xx+y+z=4
2x—y+3z=1
3x+2y—z=1

Find all solutions for the linear system

2x+y—z=1
x+ 3y + 4z= 2
7x +3y+ 4z =1
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Chapter 5

Eigen Values and Eigen Vectors

5.1 Introduction

From an applications viewpoint, eigenvalue problems are probably the most important
problems that arise in connection with matrix analysis. In this Chapter, we discuss the basic
concepts of eigen values and eigen vectors. We shall see that eigenvalues and eigenvectors are
associated with square matrices of order n X n. If n is small (2 or 3), determining eigenvalues
is a fairly straightforward process (requiring the solution of a low order polynomial equation).
In linear  algebra,  an eigenvector or characteristic =~ vectoris  avector that  has
its direction unchanged (or reversed) by a given linear transformation. More precisely, an
eigenvector, v of a linear transformation, T is scaled by a constant factor, A, when the linear
transformation is applied to it: Tv = Av The corresponding eigenvalue, characteristic value,
or characteristic root is the multiplying factor A (possibly negative).

Geometrically, vectors are multi-dimensional quantities with magnitude and direction,
often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon
which it acts. Its eigenvectors are those vectors that are only stretched, with neither rotation
nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or
squished. If the eigenvalue is negative, the eigenvector's direction is reversed.

The eigenvectors and eigenvalues of a linear transformation serve to characterize it, and
so they play important roles in all the areas where linear algebra is applied,
from geology to quantum mechanics. In particular, it is often the case that a system is
represented by a linear transformation whose outputs are fed as inputs to the same
transformation (feedback). In such an application, the largest eigenvalue is of particular
importance, because it governs the long-term behaviors of the system after many applications
of the linear transformation, and the associated eigenvector is the steady state of the system.

5.2 Definition

Consider the linear transformation of n-dimensional vectors defined by ann X
n matrix 4 as

Av =w,
where

%1 Wy
a1 QA2 Qi3 .. aln[ 1 w
az1 dpp dzz a v2| 2

n
v | =|ws].
a a a e a lJ [J
nil n2 n3 nn vy, w;,
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For each row,
w; = Ailvl + Aizvz + Ai3v3 + -+ Ainvn-

If it occurs that v and w are scalar multiples, that is if
Av=w = v (1)
then vis an eigenvector of the linear transformation 4 and the scale factor Ais

the eigenvalue corresponding to that eigenvector. Equation (1) is the eigenvalue equation for
the matrix 4.

Equation (1) can be stated equivalently as
(A— Av =0, (2)
where I is the n X n identity matrix and 0 is the zero vector.

Equation (2) has a nonzero solution v if and only if the determinant of the matrix (4 — A/) is
zero. Therefore, the eigenvalues of 4 are values of 4 that satisfy the equation

IA- 2| = 0. 3)

Using the Leibniz formula for determinants, the left-hand side of equation (3) is
a polynomial function of the variable A and the degree of this polynomial is n, the order of the
matrix A. Its coefficients depend on the entries of A, except that its term of degree n is always
(—=1)™A™. This polynomial is called the characteristic polynomial of A. Equation (3) is called
the characteristic equation or the secular equation of A.

The fundamental theorem of algebra implies that the characteristic polynomial of ann X n
matrix 4, being a polynomial of degree n, can be factored into the product of » linear terms,

det(A— ) =LA —ADA, =) ... (A4, — ). 4

where each A; may be real but in general is a complex number. The numbers 41, 42, ..., 4,, Which
may not all have distinct values, are roots of the polynomial and are the eigenvalues of 4.

If A is any square matrix of order n, we can form the matrix A - A1, where I is the n order unit
matrix. The determinant of this matrix equated to zero,

all - ﬂ. alz - /1 e aln - /1
thatis, |A—AI|= a21—l azz_l aZn—A =0’
A=A ap—4 .. a,—4

is called the characteristic equation of A.

The roots of this equation are called the eigenvalues or characteristic roots of the matrix A.
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X a1 Q12 A1n
2 a a
21 Az 2 : )
IfX=| X3 |[andA= , then corresponding to the eigen value 4 we
xn Ap1 QAnz - Qg
may write
AX = AX

and X is called the eigen vector corresponding to the eigen value A.

As a brief example, which is described in more detail in the examples section later, consider
the matrix

_[2 1
a=11 5]
Taking the determinant of (4 — A/), the characteristic polynomial of 4 is

=3 —41+ 12

2-2 1
|A—/11|=| )

)

Setting the characteristic polynomial equal to zero, we obtain the characteristic equation. It has
roots at A=1 and A=3, which are the two eigenvalues of 4. The eigenvectors corresponding to
each eigenvalue can be found by solving for the components of v in the equation

(A— ADv = 0.

From the above equation it is seen that the eigenvectors are any nonzero scalar multiples of

Vy—1 = (_11) and vy_3 = (1)

If the entries of the matrix 4 are all real numbers, then the coefficients of the
characteristic polynomial will also be real numbers, but the eigenvalues may still have nonzero
imaginary parts. The entries of the corresponding eigenvectors therefore may also have nonzero
imaginary parts. Similarly, the eigenvalues may be irrational numbers even if all the entries
of A are rational numbers or even if they are all integers. However, if the entries of 4 are
all algebraic numbers, which include the rational, the eigenvalues must also be algebraic
numbers.

The non-real roots of a real polynomial with real coefficients can be grouped into pairs
of complex conjugates, namely with the two members of each pair having imaginary parts that
differ only in sign and the same real part. If the degree is odd, then by the intermediate value
theorem at least one of the roots is real. Therefore, any real matrix with odd order has at least
one real eigenvalue, whereas a real matrix with even order may not have any real eigenvalues.
The eigenvectors associated with these complex eigenvalues are also complex and also appear
in complex conjugate pairs.
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5.3 Spectrum of a matrix

The spectrum of a matrix is the list of eigenvalues, repeated according to
multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An
important quantity associated with the spectrum is the maximum absolute value of any
eigenvalue. This is known as the spectral radius of the matrix.

5.4 Algebraic multiplicity

Let 4; be an eigenvalue of an n X n matrix 4. The algebraic multiplicity u4(4;) of the
eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest
integer & such that (1 — A,)* divides evenly that polynomial.

Suppose a matrix 4 has dimension n and d < n distinct eigenvalues. Whereas
equation (4) factors the characteristic polynomial of 4 into the product of # linear terms with
some terms potentially repeating, the characteristic polynomial can also be written as the
product of d terms each corresponding to a distinct eigenvalue and raised to the power of the
algebraic multiplicity,

det(d — AI) = (A, — DHaGD (1, — Dka@2) (1, — A)raln),

If d = n then the right-hand side is the product of 7 linear terms and this is the same as
equation(4). The size of each eigenvalue's algebraic multiplicity is related to the dimension 7 as

1 <ps()<n
and u, = sz:1 pa(d;) =n.

If uy(A;) = 1, then A; is said to be a simple eigenvalue. If 14 (4;) equals the geometric
multiplicity of A; , y4(4;), defined in the next section, then A; is said to be a semisimple
eigenvalue.

5.5 Eigenspaces and geometric multiplicity

Given a particular eigenvalue 4 of the n X n matrix 4, define the set £ to be all vectors v that
satisfy equation (2)

E={v:(A-AH)v = 0}.

On one hand, this set is precisely the kernel or null space of the matrix (4 — A1).

On the other hand, by definition, any nonzero vector that satisfies this condition is an
eigenvector of A associated with A. So, the set E is the union of the zero vector with the set of
all eigenvectors of A associated with A, and E equals the null space of (A-Al). Eis called
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the eigenspace or characteristic space of A associated with A. In general, Ais a complex
number and the eigenvectors are complex n by 1 matrices. A property of the null space is that
it is a linear subspace, so F is a linear subspace of C".

Because the eigenspace E is a linear subspace, it is closed under addition. That is, if
two vectors u and v belong to the set £, written u, v € E, then

(u+v) € E or equivalently A(u +v) =A(u + v).

This can be checked using the distributive property of matrix multiplication.
Similarly, because £ is a linear subspace, it is closed under scalar multiplication. That is,
if v € E and a is a complex number,

(av) € E or equivalently A(av) = A(av).

This can be checked by noting that multiplication of complex matrices by complex
numbers is commutative. As long as u + v and av are not zero, they are also eigenvectors
of 4 associated with 4.

The dimension of the eigenspace E associated with 4, or equivalently the maximum
number of linearly independent eigenvectors associated with A, is referred to as the
eigenvalue's geometric multiplicity y,(4). Because E is also the nullspace of (4 — Al), the
geometric multiplicity of 1is the dimension of the nullspace of (4 —Al), also called
the nullity of (4 — Al), which relates to the dimension and rank of (4 — A/) as

y4(1) =n —rank(A — Al).

Because of the definition of eigenvalues and eigenvectors, an eigenvalue's geometric
multiplicity must be at least one, that is, each eigenvalue has at least one associated eigenvector.
Furthermore, an eigenvalue's geometric multiplicity cannot exceed its algebraic multiplicity.

5.6 Properties of Eigenvalues

Let A be an arbitrary n X n matrix of complex numbers with eigenvalues 44, 1,, ..., 4,,. Each
eigenvalue appears p,(A;) times in this list, where u,(4;) is the eigenvalue's algebraic
multiplicity. The following are properties of this matrix and its eigenvalues:

1. The trace of A, defined as the sum of its diagonal elements, is also the sum of all
eigenvalues.

2. The determinant of A is the product of all its eigenvalues.

3. The eigenvalues of the k™ power of A; i.e., the eigenvalues of A¥, for any positive
integer k, are Alk,lzk, ,Ank.
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The matrix A is invertible if and only if every eigenvalue is nonzero.

1. If A is invertible, then the eigenvalues A™1 of are 1—11, i, e %,

n

geometric multiplicity coincides. Moreover, since the characteristic polynomial of the

inverse is the reciprocal polynomial of the original, the eigenvalues share the same
algebraic multiplicity.

2. If A is equal to its conjugate transpose A* , or equivalently if is Hermitian, then every
eigenvalue is real. The same is true of any symmetric real matrix.

3. If A is not only Hermitian but also positive-definite, positive-semidefinite, negative-

definite, or negative-semidefinite, then every eigenvalue is positive, non-negative,

negative, or non-positive, respectively.

If A is unitary, every eigenvalue has absolute value B|4;| = 1.

5. If Ais a nXnmatrix and are its eigenvalues, then the eigenvalues of
matrix [+A (where I is the identity matrix) are {1; + 1,4, + 1, ..., 4, + 1}. Moreover,
if, @ € C the eigenvalues of al + A are {1, + a, 4, + «, ..., A + a}. . More generally,
for a polynomial P the eigenvalues of matrix P(A) are {P(1,), P(1,), ..., P(A4x)}.

6. The Eigen vectors correspond to distinct Eigen values of a matrix are linearly
independent.

7. The Eigen values of a symmetric matrix the Eigen values are either zero (or) purely
imaginary.

8. The Eigen values of an orthogonal matrix are of unit modulus i. e. |A| = 1.

and each eigenvalue's

&

5.7 Left and right eigenvectors

Many disciplines traditionally represent vectors as matrices with a single column rather than
as matrices with a single row. For that reason, the word "eigenvector" in the context of matrices
almost always refers to a right eigenvector, namely a column vector that right multiplies the
n X n matrix A in the defining equation, equation (1),

Av = Av.

The eigenvalue and eigenvector problem can also be defined for row vectors that left multiply
matrix A. In this formulation, the defining equation is

uld = ku,

where k is a scalar and uis a 1 X n matrix. Any row vector u satisfying this equation is called
a left eigenvector of A and k is its associated eigenvalue. Taking the transpose of this
equation,

ATuT = ku,
Comparing this equation to equation (1), it follows immediately that a left eigenvector of A is
the same as the transpose of a right eigenvector of AT, with the same eigenvalue. Furthermore,

since the characteristic polynomial of AT is the same as the characteristic polynomial of A, the
left and right eigenvectors of A are associated with the same eigenvalues.
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5.8 Cayley-Hamilton Theorem

In Linear  Algebra, the Cayley—Hamilton theorem (named after the
mathematicians Arthur Cayley and William Rowan Hamilton) states that every square
matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies
its own characteristic equation.

The characteristic polynomial of an n x n matrix 4 is defined as
pa(d) = det(Al, — 4),

where det is the determinant operation, 4 is a variable scalar element of the base ring
and 7, is the n X n identity matrix. Since each entry of the matrix (Al,, — A) is either constant
or linear in A. So, it can be written as

pA(/l) = /1“ + Cn_lln_l + -+ C1/1 + Co.

By replacing the scalar variable 4 with the matrix 4, one can define an analogous matrix
polynomial expression,

pA(A) = An + Cn_lAn_l + -+ ClA + Co.

Here, A is the given matrix—not a variable, unlike A—so p4(A) is a constant rather than
a function.) The Cayley—Hamilton theorem states that this polynomial expression is equal to
the zero matrix, which is to say that

pa(4) =0,

that is, the characteristic polynomial p, is an annihilating polynomial for A. One use for
the Cayley—Hamilton theorem is that it allows 4" to be expressed as a linear combination of
the lower matrix powers of 4:

n _—_ n-1
A —_— _Cn—lA I ClA - Co.

When the ring is a field, the Cayley—Hamilton theorem is equivalent to the statement that
the minimal polynomial of a square matrix divides its characteristic polynomial.

5.9 Illustrative examples:

Example 1: Find the eigen values and eigen vectors of the matrix (i ;)
. . _(5 4
Solution: Given A = ( 1 2) (say)

The characteristic equation corresponding to the eigen value A is given by |[A — Al | = 0

i} 314l $J=0-l5 312 9J-
=>|SIA zi/1|=0
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or, 5-1)(2-1)—-4=0
or,A2—71+6=0
o,bA2—61—-1+6=0
or, A—6)(A—2) =0,
or, A = 6and 1.

Thus, the eigen values are 6 and 1.

X
Let X = (y) be an eigen vector corresponding to the eigenvalue A, such that
AX =X

G 2)6)=5()
= (5;: 24yy> - (2;)

= 5x + 4y =6x and x + 2y = 6y

Corresponding to A = 6,

=>-x+t4y=0andx—-4y=0

Let y =k, k is any real number.
Then x = 4k.

Thus, X = (4kk) =k (11})

Thus, (;L) is the eigen vector corresponding to the eigen value 6.
G 26)=16)
= (Sxx: 24;) = (;)

> 5x+4y=xandx +2y=y

Corresponding to A = 1,

=>4x+4y=0andx+y=0
Let y =k, k is any real number.

Then x = -k.
_(—k\_, (-1
Thus,X—( K ) —k( 1 )
Thus, (_1 ) is the eigen vector corresponding to the eigen value 1.
. . . (1 =2
Example 2: Find the eigenvalues and eigenvectors of the matrix (_ 6 0 )

Solution: Given A = (_1 6 _02) (say)

The characteristic equation corresponding to the eigen value A is givenby [A — Al | = 0



11 =2 1 0] _
Thatls,|_6 0 |—)l|0 1 —O=>|
or,(1-A)(-4)—-12=0
or,bA2—21-12=0
or, A—4)(A+3)=0,

or, A =4and — 3.
Thus, the eigen values are 4 and -3.

Let X = (x

y) be an eigen vector corresponding to the eigenvalue A, such that

AX =X

Corresponding to 1 = 4,

x—2y _(4x>
= (Cexro) =4y
= X - 2y =4x and -6x = 4y

= 3x+2y=0and 3x +2y=0
Let x =k, k is any real number.

Theny = —%.

k 1
Thus,X=<_g> =k<_§ .
2 2

1
Thus, (_ 5) is the eigen vector corresponding to the eigen value 4.
2

Corresponding to A = =3,
1 =2\ (X X
(—6 0 ) (y) =3 (y)
> (Zer iyo) - Cg;)
= X - 2y =-3x and -6x = -3y

=>2x=yand 2x =y
Let x =k, k is any real number.

Then y =2k .



Thus, X = (Zkk) =k (;)

Thus, (;) is the eigen vector corresponding to the eigen value -3.

Example 3: Find the eigen values and eigen vectors of the matrix
3 1 4
0 2 6)
0 0 5

Solution: The characteristic equation is corresponding to the eigen value A is given by

|[A—AI| =0
3 1 4 1 0 O
=0 2 6/—1/10 1 0/=0
0 0 5 0 0 1
3—1 1 4
= 0 2—A 6 |=0
0 0 5—-21

5B-D2=-D(5-)=0

Thus, the eigen values are 2, 3 and 5.
X
Let X = <y> be an eigen vector corresponding to the eigenvalue A, such that

z
AX =2X.

Now, corresponding to the eigen value 2 we have,

61966

3x+y+4z 2x
=>< 2y + 6z >=<2y>
5z 2z
=>3x+y+4z=2x
2y + 6z =2yand 5z = 2z
>x+y+4z=0
6z=0
3z=0

=z =0.
Let x =k, k is any real number. Then y = -1

k 1
Thus, X = <—k) =k (—1).
0 0
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1 1
Thus the eigen vector corresponding to the eigen value 2 is <—1>. And (—1)
0 0

0

1
) and

In a similar way, the eigen vectors corresponding to the eigen values 3 and 5 are (
0

(
),

Example 4: Find the eigen values and eigen vectors of the matrix (
Solution: The characteristic equation is corresponding to the eigen value A is given by

3
2

> respectively.
1

1 1 3
1 51
311

A=A =0
1 1 3 1 0 0
=>|1 5 1|—-1(0 1 0[=0
311 0 0 1
1-2 1 3
=11 5—-1 1 |[=0
3 1 1-1

> A-3)A-6)(1+2)=0

Thus, the eigen values are 3, 6 and -2.

X

Let X = <y

) be an eigen vector corresponding to the eigenvalue A, such that
z

AX = AX.
Now, corresponding to the eigen value -2 we have,

1 1 3\ /x X
<1 5 1><y> =-2<y>
3 1 1/ 3z z

x+y+3z —2x
= (x + 5y+z>=<— 2y )
3x+y+z —2z

=>x+y+3z=—-2x

X+5y+z=-2y

and3x +y+z = -2z
Solving, y = 0.

Let x =k, k is any real number. Then z = -k.
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k 1
Thus,X=< 0)=k( 0).
—k -1

x
Let X = <y> be an eigen vector corresponding to the eigenvalue A, such that
z
AX=2X.

Now, corresponding to the eigen value 3 we have,

(25 60

x+y+3z 3x
= (x+5y+z>=<3y)
3x+y+z 3z
=>x+y+3z=3x

x+5y+z=3y
and3x+y+z =3z

Solving, x = —y = z.

Let x =k, k is any real number. Then y =-k and z =k

k 1
Thus, X - <_k) _ (_1>.
k 1

X
Let X = <y> be an eigen vector corresponding to the eigenvalue A, such that

z
AX =21X.

Now, corresponding to the eigen value 6 we have,

(25 k)<

x+y+3z 6x

= (x+5y+z>=<6y>
3x+y+z 6z
>x+y+3z=06x
x+5y+z=6y
and3x +y+z =6z

Solving, x = z = %

Let y =k, k is any real number. Then x = z = 2k.
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2k 2
Thus,X=<k) = k(l).
2k 2

5 -10 -5
Example 5: Find the eigen values and eigen vectors of the matrix ( 2 14 2 )
-4 -8 6

Solution: The characteristic equation is corresponding to the eigen value A is given by

A=A =0
5 -10 -5 1 0 0
=12 14 2(—A[0 1 0]=0
-4 -8 6 0 0 1
5-4 -10 -5
=>| 2 14—-2 2 [=0
—4 -8 6—A41

=>1A-5A-10)2=0
Thus, the eigen values are 5, 10 and 10.
X
Let X = <y> be an eigen vector corresponding to the eigenvalue A, such that
z

AX=1X.

Now, corresponding to the eigen value 5 we have,
5 =10 =5\ /x X
2 14 2 <)’ ) =5 <}’ )
-4 -8 6/ ‘z z

5x — 10y — 5z 5x

= <2x + 14y + 22)2(5)})
—4x — 8y + 6z 5z
= —-10y—-5z=0

2x+9y +2z=0
and —4x —8y+z=0

5
Solving, we get the eigenvector corresponding to the eigenvalue 5 as (—2).
4

x
Let X = (y) be an eigen vector corresponding to the eigenvalue A, such that
z

AX=2X.

Now, corresponding to the eigen value 10 we have,
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5 —10 -5\ /x x
( 2 14 2 )(y) =10<y>
—4 -8 6/\z z

5x —10y — 5z 10x
= <2x + 14y + Zz>=<10y>
—4x — 8y + 6z 10z
= 5x — 10y — 5z = 10x
2x + 14y + 2z = 10y
and —4x — 8y + 6z = 10z
>x+2y+z=0.

So, the eigenvectors are of the form

SRR

2 -1
Thus, (1) and ( 0 ) are two eigenvectors corresponding to the eigenvalue 10.
0 1

Example 6: Find the eigen values and eigen vectors of the matrix
2 2 2
<2 2 2).
2 2 2

Solution: The characteristic equation is corresponding to the eigen value A is given by

|JA—AI|=0
2 2 2 1 0 O
=>2 2 2|—-4/10 1 0]/=0
2 2 2 0 0 1
2—2 2 2
=>| 2 2—2 2 |=0
2 2 2—-2
= A-5@A—-10)2=0
Thus, the eigen values are 0, 0 and 6.
x
Let X = <y> be an eigen vector corresponding to the eigenvalue A, such that
z

AX =2X.
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Now, corresponding to the eigen value 0 we have,

(22200

>x+y+z=0.

Lety = kyand z = k,, thenx = —(k; + k3 ).

(kg + k) ~1 1
ThenX=< k1 >=k1<1>+k2<0>
k, 0 1

-1 -1
Thus, two eigenvectors corresponding to the eigenvalue 0 are < 1 ) and < 0 )

Now, corresponding to the eigen value 6 we have,

2 2 2\ /x X
E2 900
2 2 2/ \z z
=>-2x+y+z=0
x—2y+z=0

x+y—2z=0.

Lety =z = k.Thenx =k, thatis, x =y =2z = k.

k 1
Then X = <k> =k (1)
k 1

1
Thus, two eigenvectors corresponding to the eigenvalue 6 is (1)
1

Example 7: Find the eigen values and eigen vectors of the matrix
1 0 0
(O 2 O).
0 0 3

Solution: The characteristic equation is corresponding to the eigen value A is given by

A=A =0
1 0 O 1 0 0
=10 2 0/—4(0 1 0[=0
0 0 3 0 0 1
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>1-H)2-1)B-1)=0
Thus, the eigen values are 1, 2 and 3.

X

Let X = (y) be an eigen vector corresponding to the eigenvalue A, such that

z
AX=1X.

Now, corresponding to the eigen value 1 we have,

(32 9)6)0)

= x =x,2y =yand 3z = z.
Let x = k, where k is any non-zero real number.

Weget,y=0and z = 0.

k 1
Then X = <0> =k (0)
0 0

1
Therefore, the eigenvector corresponding to the eigenvalue 1 is (O)

0
Now, corresponding to the eigen value 2 we have,

(32 9)6)=)

= x = 2x,2y = 2y and 3z = 2z.
Let y = k, where k is any non-zero real number.

We get, x = 0and z = 0.
0 0

ThenX=|k|=k| 1]
0 0
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0
Therefore, the eigenvector corresponding to the eigenvalue 2 is (1)
0

Now, corresponding to the eigen value 3 we have,

32 9=

= x = 3x,2y = 3y and 3z = 3z.
Let z = k, where k is any non-zero real number.

We get, x =0and y = 0.

0 0
Then X = <0) =k <0>
0 1

0
Therefore, the eigenvector corresponding to the eigenvalue 3 is (O)
1

Example 8: Find the eigen values and eigen vectors of the matrix

1 2 4
0 4 7).
0 0 6

Solution: The characteristic equation is corresponding to the eigen value A is given by

A=A =0
1 2 4 1 0 0
=10 4 7|—-1(0 1 0[=0
0 0 6 0 0 1
1-4 2 4
=10 4—2 7 [=0
0 0 6— A1

>(1-H)@E-1)6-1)=0
Thus, the eigen values are 1, 4 and 6.

Now, corresponding to the eigen value 1 we have,
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(32 )60

>y+2z=0
3y+7z=0
5z=0
Thus, we get z = 0.
Let,x=kandy=—%.
k 1 2
Then X = —% =k —; =k<—5>.
0 0 0

Therefore, the eigenvector corresponding to the eigenvalue 1 is (—5).

0

Now, corresponding to the eigen value 4 we have,

1 2 4\ ,x x
(0 4 7) <y> =4<y>
0 0 6/ \z z
>-3x+2y+4z=0
7z =0
2z=0

Thus, z = 0.
Let, x = k and thus, y = %k.

k 1 2
Then X = % —k 2 =k<3>.
0 0 0

2
Therefore, the eigenvector corresponding to the eigenvalue 4 is (3)
0

Now, corresponding to the eigen value 6 we have,
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1 2 4\ /x x
0 4 7 <}’)=6<)’>
0 0 6/ \z z
>-5x+2y+4z=0
—2y+7z=0
z=0
Thus, z = k.
Let,x=%and thus, y = 72—k

11k 11

5 5 22
ThenX=| 7k |=k| 7 |=k|35].

2 2 (O)

0 0

22
Therefore, the eigenvector corresponding to the eigenvalue 4 is (35).
0

Example 9: Verify Cayley-Hamilton theorem for the matrix A = (; ;) and find its
inverse. Also express A% — 44* — 743 + 114%-A-101 as a linear polynomial in A.

Solution: The characteristic equation corresponding to the eigen value A is given by
A=Al =0

i} 24 81-0= 311
=127 50 A|

S(1—=2)(3—2)—8=0

>12—-42-5=0

By Cayley-Hamilton theorem, A must satisfy its characteristic equation, so that we have to
verify that if

A2—4A—51=0. i, (1)

Now (5 3)(; 3)-4G 3 Y)
(5 127G 12-( G o-°
Thus, the theorem is verified.

Now, multiplying equation (1) by A™1, we get
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A1(A2—44-50)=0
S A—4—-54"1=0

> ATt =Z(A—4)
3G 94
=§(_23 —41)

Now dividing the polynomial 1> — 41* — 7143 + 114%2-A-10 1 by the polynomial A2 — 41 — 5,
we obtain

A5 —42* =723 + 112%-A-10 1
=(A2—-42-5)(3—-21+3)+1+5
=A+5
Hence, A5 — 44* — 743 + 114%2-A-10 I= A + 51, is a linear polynomial in A.
1 1 3
Example 10: Find the characteristic equation of the matrix A = < 1 3 —3) and

-2 -4 -4
hence find its inverse.

1-1 1 3
Solution: The characteristic equationis | 1 3—-1 -3
-2 -4 —4-2

or,(1 = D{B =) (=4 —2) =12} = 1{(=4 - D)} + 3{—4 + 2B =D} = 0
or,A23—-2014+8=0
Thus, by Cayley-Hamilton theorem, A> — 204 + 81 = 0.
Multiplying both sides by A™1, A71A3 —20A471A+8A7 =0

= A% - 201 +84 =0
S A =21 242
2 8

1 0 0 -4 -8 -12
<O 1 0)—-(10 22 6
0 0 1 2 2 22

3 1 3/2
=<—5/4 ~1/4 —3/4).
—~1/4 —-1/4 —1/4

N |un
@ | =
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5.10 Matrix Diagonalization:

Matrix diagonalization is the process of reducing a square matrix into its diagonal form
using a similarity transformation. This process is useful because diagonal matrices are easier
to work with, especially when raising them into integer powers.

Not all matrices are diagonalizable. A matrix is diagonalizable if it has no defective
eigenvalues, meaning each eigenvalue’s geometric multiplicity is equal to its algebraic
multiplicity.

Matrix similarity transformation:

Let A and B be two matrices of order n. Matrix B is considered similar to A if there exists an
invertible matrix P such that:

B= P 1AP

This transformation is known as Matrix similarity transformation. Similar matrices have the
same rank, trace, determinant, and eigenvalues.

Diagonalization of a matrix:
Diagonalization of a matrix refers to the process of transforming any matrix A into its diagonal
form D. According to the similarity transformation, if A is diagonalizable, then

D= PIAP

Where D is a diagonal matrix and P is modal matrix.

A modal matrix is an n X n matrix consisting of the eigenvectors of A. It is essential in the
process of diagonalization and similarity transformation.

Conditions for diagonalization:

A matrix is diagonalizable if it has n linearly independent eigenvectors, or if the sum of
the geometric multiplicities of its eigenvalues is n.

1 0 -1
Example 1: Diagonalize the matrix (1 2 1 )
2 2 3

Solution: The characteristic equation is corresponding to the eigen value A is given by

A=A =0
1 0 -1 1 0 O
=11 2 1|—-1(0 1 0[=0
2 2 3 0 0 1
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1-2 0 -1
=11 2—-1 1 |[=0
2 2 3—-4

>A-1)A1-2)(1-3)=0
Thus, the eigen values are 1, 2 and 3.

Now, corresponding to the eigen value 1 we have,
1 0 -1\ /x X
£ 9)0-6)
2 2 3 z z
k 1
ThenX=|—-k |=k|—-1|
0 0

1
Therefore, the eigenvector corresponding to the eigenvalue 1 is (—1).
0

-2 1
Similarly, for the eigenvalues 2 and 3, we get the eigenvectors as < 1 ) and (—1).
2 -2

1 -2 1
Thus, we may write the modal matrix as P = <—1 1 —1>.

0 2 =2
1 -2 1
Weget|Pl=]1-1 1 —-1|=2#0
0 2 =2
. 0o -2 1
Therefore, P~ = 5 -2 =2 0 )
-2 -2 -1

Thus, we get the Diagonal matrix

L 0 -2 1 1 0 -1 1 -2 1
D =P AP = > -2 =2 0 > 1 2 1 ) -1 1 —1)
-2 =2 =1/\2 2 3 0 2 =2

1 0 0
=0 2 0|
0 0 3
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5.11 Applications of Eigenvalues and Eigenvectors in different fields:

Originally eigenvalues and eigenvectors were used to study principal axes of the
rotational motion of rigid bodies, but now widely used in stability analysis, atomic orbitals,
facial recognition, and matrix diagonalization.

Also, it is used in geometric transformations, principal component analysis, in graph
theory, Markov chain analysis, vibration analysis, stress and strain analysis, wave transport,
molecular orbitals, geology and glaciology, basic reproduction number, eigenfaces etc.

Exercises:

=

1 10
Find the eigenvectors of the matrix A = <O 1 1).
0 0 1

2. Find the eigenvalues and eigenvectors of A, A%, A+ 4l and A™* of A = [_21 _21]

Also, check the trace and determinant of A.

1 -1 0
3. Find the eigenvalues and eigenvectors of the matrix |—1 2 —1].
L0 -1 1
2 1 2
4. Find the eigenvalues and eigenvectors of the matrix |4 2 4
2 1 2
1 2 1
5. Find the eigenvalues and eigenvectors of the matrix [3 6 3
4 8 4
2 1 2
6. Find the eigenvalues and eigenvectors of the matrix |4 2 4
2 1 2
6 3 3
7. Find the eigenvalues and eigenvectors of the matrix [2 1 1
8 4 4
2 -1 1
8. Verify Cayley-Hamilton theorem for the matrix (—1 2 —1). Hence find the
‘ ‘ 1 -1 2
mmverse matrix.
1 2 3
9. Verify Cayley-Hamilton theorem for the matrix (2 -1 4). Hence find the inverse
. 3 1 1
matrix.
-1 1 0
10. Verify Cayley-Hamilton theorem for the matrix (—4 3 O). Hence find the inverse
' 1 0 2
matrix.
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11. Verify if the matrix is diagonalizable: A = [g _11]

1 3 1

200]
0 0 3

12. Compute the Diagonal form A =
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Chapter 6

Vector Spaces

6.1 Introduction

A vector space is a fundamental mathematical structure used in various fields, including physics,
engineering, and computer science. It provides a framework for studying linear combinations,
transformations, and multi-dimensional spaces.

6.2 Definition and Basic Properties
A vector space VV over a field F is a set equipped with two operations:
e Vector addition: +:V XV -V
e  Scalar multiplication: = F XV -V
These operations satisfy the following axioms for all u,v,w € V and all scalars a, b € F:
1. Associativity of Addition: (u+v)+w=u+ (v+w)
Commutativity of Addition: u+v=v+u
Additive Identity: There exists 0 € V suchthatv+ 0 =v forallv e V.
Additive Inverse: For each v € V, there exists —v € V such that v + (—v) = 0.
Associativity of Scalar Multiplication: a(bv) = (ab)v.

Distributivity of Scalars over Vector Addition: a(u + v) = au + av.

o a &~ w npoPE

Distributivity of Scalars over Field Addition: (a + b)v = av + bv.
7. Multiplicative Identity: 1v = v forallv e V.

Let V be a vector space over a field F, and let u,v,w € V and a, b € F. The following properties
hold:

6.3 Elementary Properties
1. Uniqueness of the Zero Vector: There is only one vector 0 in V such that

v+0=v,Vvelv.
1. Uniqueness of Additive Inverses: For each v € V, there is a unique —v such that
v+ (—v)=0.
F.1



Zero Scalar Multiplication: Forany v € V,
0-v=0.
That is, multiplying any vector by the scalar 0 results in the zero vector.
Zero Vector Scaling: For any scalar a € F,
a-0=0.
Scaling the zero vector by any scalar does not change it.
Negation of a Scalar Multiple: Foranyv e Vanda € F,
(—a)v = —(av).
That is, multiplying by a negative scalar is equivalent to negating the vector.
Negation of a Vector is Scalar Multiplication by —1:
(-Dv =—v.
Cancellation Law: If
ut+v=u+w,
then
VvV =w.

Scalar Multiplication by Zero Implies Zero Vector: If av = 0 for some nonzero scalar
a, then

v =0.

This means that if scaling a vector results in the zero vector, the vector must have been
zero to begin with.

Examples of Vector Spaces

R" as a Vector Space

The set of all ordered n -tuples of real numbers,

R™ = {(vq, vy, ..., 1)) |V; € R}

iS a vector space over R, with operations:

u+v=_~0U +v,U + Uy, Uy + V)

cv = (cvy,Ccvy, ..., CV,),C ER

Verification:
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Closure: The sum and scalar multiple of two n -tuples are also n -tuples.
Zero vector: 0 = (0,0, ...,0).
Additive inverse: —v = (—vq, —V5, ..., —1y).

Commutativity and associativity follow from real number addition.

o & W npoPE

Distributive and associative properties hold due to real number multiplication.
Thus, R™ is a vector space.
2. Polynomial Space Pn(R)
The set of all polynomials of degree at most n,
P,(R) ={ap+a;x+ -+ a,x"|a; € R}

is a vector space over R, with operations:

P+ ) =pk) +qx), (cp)(x) =c-p().
Verification:

e  Closure: The sum and scalar multiple of polynomials of degree at most n remain
polynomials of degree at most n.

e  Zero vector: The zero polynomial 0(x) = 0.
e Additive inverse: —p(x).

e  Commutativity, associativity, and distributive properties follow from real number
operations.

Thus, B,(R) is a vector space.
3. Space of Continuous Functions C([a,b])
The set of all continuous functions on [a, b],
C([a,b]) = {f:[a, b] » R|fis continuous}
IS a vector space over R, with operations:
F+9)0) =) +gx), (cfHx) =c- fx).

Verification:

e  Closure: The sum and scalar multiple of continuous functions are continuous.

e  Zero vector: f(x) = 0.

e Additive inverse: —f(x).
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e  Commutativity, associativity, and distributive properties hold pointwise.
Thus, C([a, b]) is a vector space.
6.4 Vector Subspaces

Definition and Basic Properties

Definition
Let V be a vector space over a field F. A nonempty subset W < V is called a vector subspace of
V7 if it satisfies the following conditions:

1. Closure under addition: If u,v € W,thenu+v e W.
1. Closure under scalar multiplication: If v € W and c € F,thencv € W,

If a subset IV satisfies the two conditions above, then it is automatically a vector space with the
same operations as V, and we say that W is a subspace of V.

Example 1
The following are always subspaces of any vector space V:

e The zero subspace {0}, consisting of only the zero vector.
e  The vector space V itself is a subspace of V.

Example 2
Consider the vector space R3 with standard vector addition and scalar multiplication. The
following are subspaces:

e The set of all vectors of the form (x, 0,0), which forms the x -axis in R3.
e  Any plane through the origin, suchas W = {(x,y,0)|x,y € R}.
e  The zero subspace {(0,0,0)}.

The Subspace Criterion

To verify whether a subset is a subspace, we use the following theorem:

Theorem
A nonempty subset W of a vector space V is a subspace of V if and only if for all u,v € W and
a,b € F, the linear combination

au+bv eWw.
Proof

e  Suppose W is a subspace. Then, by definition, it is closed under addition and scalar
multiplication. Hence, for any scalars a, b, we have au € W and bv € W, and their sum
isalsoin W.
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e  Conversely, if the condition holds for all u,v € W and scalars a, b, then choosing a = 1
and b = 1 shows closure under addition, and choosing b = 0 shows closure under scalar
multiplication.

Examples and Counter examples

Example 3
Consider the set

W ={(x,y,z) ER}|x +y+2z=0}.
To check if W is a subspace:
e  Closure under addition: If (x4, y4,2;) and (x,, y,, z;) are in W, then
i +x)+ O +y)+ (@ +2) = +y1+2z) + (2 +y, +2,) = 0.
Thus, W is closed under addition.
e  Closure under scalar multiplication: If ¢ € R, then
cx+y+z)=cx+cy+cz=0.
Thus, W is closed under scalar multiplication.
Since both properties hold, W is a subspace.

Counter Example
Consider the subset

S ={(x,y) € R*|xy = 0}.

It is not a subspace because it is not closed under addition. For example, (1,0) and (0,1) are in S,
but their sum (1,1) is not.

Note: Vectors are fundamental objects in linear algebra. They can be “added together” and
“scaled” to form new vectors. This chapter introduces “linear combinations”, the concept of
“spanning” a space, and the key properties of “linear dependence” and “linear independence”.
These ideas are essential in understanding vector spaces, basis, and dimension.

6.5 Linear Combination of VVectors

Definition: Let V be a vector space over a field F, and let v,, v,, ..., v,, be vectors in V. A vector
w € V is said to be a linear combination of v;, v,, ..., v, if there exist scalars ¢y, ¢, ..., ¢, € F
such that

W = C1Vq + Uy + -0 + Uy,
Example 4: Consider the vectors v; = (1,2,3) and v, = (2,3,4) in R3. The vector w = (5,8,11)
can be written as:
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w = 3v; + v,.
Thus, w is a linear combination of v; and v,.

Remark

The concept of a linear combination is crucial because it helps define the span of a set of vectors,

which describes all possible vectors that can be formed from a given set.
6.6 Linear Dependence and Independence and Basis

Definition and Interpretation

Definition: A set of vectors {v,, v, ..., v, } in a vector space V is called linearly dependent if

there exist scalars ¢, ¢, ..., ¢,,, NOt all zero, such that

C1V1 + vy + -+ vy, = 0.

This means that at least one of the vectors in the set can be expressed as a linear combination of

the others.

Definition: A set of vectors {v,, v, ..., v, } is said to be linearly independent if the only
solution to the equation

C1V1 + vy + -+ v, =0
isc;=c,=+-=c¢c,=0.
Examples
Example 5: Consider the vectors:
v, = (1,2,3),v, = (2,4,6),v3 = (3,6,9)
in R3. These vectors satisfy:

2U1 —172 = O

Since we found nonzero scalars that satisfy the equation, the vectors are linearly dependent.

Example 6: Consider the vectors:
v, = (1,0,0), v, = (0,1,0), v; = (0,0,1)
in R3. Suppose:
¢1(1,0,0) + ¢,(0,1,0) + ¢3(0,0,1) = (0,0,0).
Then, comparing components, we get:
¢ =0,c, =0,c3=0.

Since the only solution is the trivial one, these vectors are linearly independent.
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Theorems on Linear Dependence

Theorem 1: Any set of more than n vectors in an n -dimensional vector space is linearly
dependent.

Proof

Let V be an n -dimensional vector space, and suppose we have a set of m vectors {v, v, ..., v, }
with m > n.

Since the dimension of V is n, any basis of V' consists of exactly n linearly independent vectors.
This means that at most n vectors can be linearly independent in V.

Since our set has more than n vectors, at least one of them must be expressible as a linear
combination of the others. That is, there exist scalars ¢, c,, ..., ¢,,, N0t all zero, such that:

C1V1 + CoUy + -+ Uy, = 0.

This shows that the vectors are linearly dependent.

Theorem 2: Any subset of a linearly dependent set is also linearly dependent.

Proof Let S = {v;, v,, ..., v, } be a linearly dependent set. This means there exist scalars
C1,Cy, ..., Cn, NOt all zero, such that:

C1V1 + vy + -+ vy, = 0.

Now, consider a subset S’ of S. Since S’ consists of some or all of the vectors in S, the linear
dependence equation above still holds within S’. That is, at least one of the vectors in S’ is
expressible as a linear combination of the others in S’. Thus, S”is also linearly dependent.

Theorem 3: Any set of vectors in a vector space that contains the zero vector is linearly
dependent.

Proof Let S = {vy, v, ..., vy, 0} be a set of vectors where 0 is the zero vector. Consider the
equation:

C1V1 + €Uy + -+ Uy + €410 = 0.
Choosing c,,, # 0 and setting all other coefficients to zero, we get:
10 = 0.
Since ¢, 1 # 0, this provides a nontrivial solution, proving that the set is linearly dependent.

Theorem 4: A set containing two vectors v; and v, is linearly dependent if and only if one is a
scalar multiple of the other.

Proof
Suppose v, = cv; for some scalar c. Then:

v, —cv; = 0.

This is a nontrivial linear dependence relation, so {v,, v,} is linearly dependent.
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Now, suppose v; and v, are linearly dependent. Then there exist scalars c;, c¢,, not both zero,
such that:

Cc1V¢ + CUy = O

If c; # 0, we can rewrite:

This shows that one vector is a scalar multiple of the other.
Theorem 5: Any set of three vectors in R? is linearly dependent.

Proof The space R? has dimension 2, so any basis consists of at most two linearly independent
vectors.

If we have three vectors vy, v,, v3 in R?, then at least one of them must be a linear combination
of the others. Thus, there exist scalars c;, c,, c5, not all zero, such that:

Clvl + szz + C3U3 = 0
This confirms that any three vectors in R? are always linearly dependent.

Exercise 6.6.1: Determine whether the following vectors in R3 are linearly dependent or
independent:

v, = (1,2,3),v, = (4,5,6),v5 = (7,8,9).
Exercise 6.6.2: Find a basis for the subspace of R® spanned by the vectors
(1,2,3),(2,4,6), (3,6,9).

Exercise 6.6.3: Prove that if a set of vectors contains the zero vector, it must be linearly
dependent.

Exercise 6.6.4: Prove that if n + 1 vectors are chosen from an n -dimensional space, they must
be linearly dependent.

Exercise 6.65: Determine whether the following vectors in R? are linearly dependent or
independent:

v, = (1,2,3),v, = (4,5,6),v5 = (7,8,9).
Exercise 6.6.6: Find a basis for the subspace of R® spanned by the vectors
(1,2,3),(2,4,6), (3,6,9).

Exercise 6.6.7: Prove that if a set of vectors contains the zero vector, it must be linearly
dependent.
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Exercise 6.6.8: Prove that a set of two vectors in R3 is always linearly dependent if one is a
scalar multiple of the other.

Linear Independence and Basis
A set of vectors {vy, v, ..., v } is linearly independent if:
avy+av+ -t av=0=>a, =a, =--=a, =0.
Definition A set of vectors B = {vy, v,, ..., v, } in @ vector space V is called a basis if:
1. B islinearly independent.

1. B spans V, meaning that every vector in V can be written as a linear combination of
vectors in B.

The number of elements in any basis is the dimension of V.

6.7 Spanning Sets and Basis of a Subspace

Definition

A set of vectors S = {vy,v,, ..., v} € V is said to span a subspace W if every vector in W can

be written as a linear combination of vectors in S:
W = span(S) = {c;v; + cuv, + - + Vi |c; € F}.

Definition
Aset B = {v,,v,, ..., Uy } IS @ basis for a subspace W if:

1. BspansW/.
2. B islinearly independent.
Example 7: Spanning Set in R?

Consider the set of vectors:

s={lol- (111}

X . : "
The set S spans R? because any vector v = [y] can be written as a linear combination:

o 0 1
v—a[o]+b[1]+c[1].
However, this set is not a basis because it contains three vectors in a 2-dimensional space,
meaning it is linearly dependent.

Example 8: Basis of R?

The set:
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5= {lol-[}]

is a basis for R? because:

2. ltis linearly independent: If

algl +[3] =0
thena=0and b = 0.

e Itspans R?: Any vector in R? can be written as a linear combination of these two
vectors.

Thus, B is a basis for R?.

Example 9: Spanning Set and Basis in R®

sl G

X

yl can be expressed as a linear combination
Z

Consider the set:

This set spans R3 because any vector v =

of these four vectors.

However, it is not a basis because it contains four vectors in a 3-dimensional space,
meaning it is linearly dependent.

0

0f¢-

1

=l

This set is linearly independent and spans R3, so it forms a basis.

A basis for R3 is:

Example 10: Basis of the Space of Polynomials P>
The space of polynomials of degree at most 2 is:
P, = {ay + a;x + ayx?|ay, a;,a, € R}.
A basis for P, is:
B ={1,x,x%}.
These three polynomials are linearly independent: If

ap(D) + ar(x) + a,(x?) =0
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forall x, thenay, = a; = a, = 0.

They span P,: Any polynomial in P, can be written as a linear combination of these
three.

Thus, B is a basis of P,.

Example 11: Infinite-Dimensional Basis — Fourier Series
The space of periodic functions on [0,27r], denoted L?(0,2m), has an infinite basis given by:
B = {1,sinx,cosx,sin2x,cos2x,sin3x,cos3x, ... }.

This basis is infinite because the space of all periodic functions cannot be spanned by a finite set
of functions.

Each vector space has spanning sets and bases, but a basis must be both spanning and linearly
independent.

Exercises

Exercise 6.7.1
Determine whether the following sets are subspaces of R3:

1. W, ={(xy,2)|x—2y+3z=0}
1. W, ={(x,y,1|x,y €R}.

Exercise 6.7.2
Find a basis for the subspace of R3 given by

W = span{(1,2,3),(2,4,6),(3,6,9)}.

Theorem[Replacement Theorem] Let VV be a vector space over a field F. Suppose that S =

{v1, vy, ..., v} is @ linearly independent set in VV and that T = {w;, wy, ..., w,, } IS a spanning set
for V. If m > n, then S cannot be linearly independent, and if m < n, then some vectors of T can
be replaced by vectors from S to form a new spanning set of V.

Proof Let S = {v;, v,, ..., 1, } be a linearly independent set, and let T = {w;, w,, ..., w, } be a
spanning set of V. Since T spans V/, each vector in S can be written as a linear combination of
vectors from T.

Step 1: Expressing Vectors of S in Terms of T

Each v; (for 1 < i < m) can be written as:
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v = AWy + apw; + oo+ awy,for some scalarsa;; € F.
This forms a system of m equations in n unknowns.
Step 2: Linear Dependence When m > n

If m > n, then we have more equations than unknowns. This implies that the system has a
nontrivial solution where at least one of the v;’s is a linear combination of the others. This
contradicts the assumption that S is linearly independent, proving that S cannot be independent if
m>n.

Step 3: Replacing Vectors to Form a New Spanning Set

If m < n, we construct a new spanning set by replacing some vectors in T with vectors from S.
We proceed by replacing w; with v;. Since v, is a linear combination of the w;’s, we can
express w; in terms of the remaining vectors and v,. This replacement preserves the spanning
property.

Repeating this process for v,, v, ..., v,,,, We eventually replace m vectors in T, resulting in a new
spanning set that includes S. This new set still spans I/, as every vector in V can still be written
as a linear combination of the updated set.

Thus, we have replaced m vectors from T with the m linearly independent vectors from S,
proving the second part of the theorem.

Theorem: If vi,v2,...,Vr are vectors in a vector space V, then:

(@) The set W of all linear combinations of vi, vz, ..., Vs is a subspace of V.

(b) W is the smallest subspace of V that contains vi, v2, . . ., vr every other

subspace of V that contains vi, v, ..., v must contain W

Proof: (a) To show that W is a subspace of V, it must be proven that it is closed
under addition and scalar multiplication. There is at least one vector in W, namely,

0, since 0 =0v1 +0v2 + - - -+ 0vr. If u and v are vectors in W, then

U= Civi +Cav2 + -+ C/Vr
and
VvV = kivi + kovo + -+ - + Kkpvr
where c1,C2,...,Cr, K1, Kz, ..., kr are scalars. Therefore

u—+v = (c1+ Kki)vi + (c2 + ka)va + - - - + (Cr + kr)vr
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and, for any scalar k, ku = (kci)vi + (kc2)vz + - - - + (KCr)Vvr.

Thus, u + v and ku are linear combinations of vi, v2, ..., vr and consequently lie in W.
Therefore, W is closed under addition and scalar multiplication.

(b) Each vector vi is a linear combination of vi, vz, ..., Vvr since we can write

Vi=0vi+O0vz2+ -+ 1vi+ .-+ 0vr
Therefore, the subspace W contains each of the vectors vi, vz, ..., vr. Let W' be any
other subspace that contains vi, vz, ..., vr. Since W' is closed under addition and scalar

multiplication, it must contain all linear combinations of vi, vz, ..., vr. Thus W'

contains each vector of W.

Theorem: Let S={vl,v2,...,vr}and S'={wl, w2, ..., wk} be two sets of vectors in
a vector space V . Then span(S) = span(S’) if and only if each vector in S is a linear
combination of those in S’ and (conversely) each vector in S'is a linear combination of
those in S.

Proof. If each vector in S is a linear combination of those in S’ then span(S) < span(S') and
if each vector in S' is a linear combination of those in S then span(S') < span(S) and

therefore span(S) = span(S").
If Vi= aiwi + agwz + - - - + anWn
for all possible a1, az, . . ., an then vi € span(S) but vi /e span(S’) therefore and vice versa.

6.8 Dimension of a Vector Space

Definition: The dimension of a vector space V, denoted dim(V), is the number of vectors in any
basis of I/.

Example: The dimension of R™ is n, since the standard basis consists of n vectors
{(1,0, ...,0),(0,1, ...,0), ..., (0,0, ...,1)}.

Theorem: Any two bases of a vector space have the same number of elements.

Proof Let B, and B, be two bases of V. Assume B, has more elements than B,. Then, since B,
spans V, every vector in B; can be expressed as a linear combination of vectors in B,,
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contradicting linear independence of B,. Similarly, reversing the roles of B, and B,, we obtain a
contradiction, proving that both bases must have the same number of elements.

Exercises
Exercise 1: Determine whether the set {(1,0,0), (0,1,0), (0,0,1)} forms a basis for R3.
Exercise 2: Find the dimension of the space of all polynomials of degree at most 3.

Exercise 3: Prove that if V is a vector space of dimension n, any set of n linearly independent
vectors is a basis of V.

Existence of a Basis (Spanning Set and Linear Independence)
Theorem: Every vector space has a basis.

Proof: Let V be a vector space. If V = {0}, the trivial space, then the set {0} is a basis. For non-
trivial vector spaces, take any spanning set of V, say S = {v,, v,, ... }. If S is linearly independent,
it is a basis. If not, remove vectors from S until you obtain a linearly independent set. This set
must span V by the definition of a spanning set. Thus, V has a basis.

2. Uniqueness of Basis (Dimension Theorem)
Theorem: Any two bases of a vector space IV have the same number of elements.

Proof: Let B; = {by, by, ..., by} and B, = {cy, C, ..., C;n} b€ two bases of V. Assume for
contradiction that n #= m. Without loss of generality, assume n < m. Then {by, b, ..., b, } is a
linearly independent set of vectors. Since B, is a basis, each b; for 1 < i < n can be written as a
linear combination of the vectors in B,. This contradicts the fact that B, is linearly independent.
Therefore, n = m, so all bases of V' have the same size.

3. Dimension of a Subspace

Theorem: If W is a subspace of a vector space V/, then the dimension of W is less than or equal
to the dimension of I/.

Proof: Let By, = {wy,w,, ..., w,} be a basis of W, and By = {vy, v,, ..., v, } be a basis of V.
Since By is a set of linearly independent vectors in V, and By, is a spanning set for V, we have
k <m,sodim(W) < dim(V).

4. Extension of a Linearly Independent Set

Theorem: If S = {v;, v,, ..., v, } is a linearly independent set of vectors in a vector space V, then
it can be extended to a basis of V.

Proof: Let S be a linearly independent set in V. If S spans V, then S is already a basis. Otherwise,
take any vector v € V that is not in the span of S. Add this vector to S, and continue adding
vectors from V that are not in the span of the set so far, maintaining linear independence. This
process must eventually result in a basis of V.
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5. Rank-Nullity Theorem
Theorem: For a linear transformation T: V' — W between vector spaces VV and W, we have
dim(ker(T)) + dim(im(T)) = dim(V)

Proof: Let {v,, v,, ..., Uy} be a basis for the kernel of T, and extend it to a basis
{V1, Vg, i) Vi, Vig1y oo Un } OF V. The set {T (vy41), T (Vi 42), ..., T(vy,)} is linearly independent
and spans the image of T, so dim(im(T)) = n — k. Therefore,

dim(ker(T)) + dim(im(T)) =k+(n—k)=n=dim(V)
Thus, the rank-nullity theorem holds.
6. Independence of the Columns of a Matrix

Theorem: The columns of an m X n matrix are linearly independent if and only if the rank of
the matrix is equal to n.

Proof: Let A be an m X n matrix. The columns of A are linearly independent if the only solution
to Ax = 0 is x = 0. This implies that the nullity of A is 0. By the rank-nullity theorem, we know
that the rank of A (the number of linearly independent columns) is n. Therefore, the columns are
linearly independent if and only if the rank of A is n.

6.9 Linear Transformations

A function T: V — W between vector spaces is a linear transformation if:
T(av + bw) = aT(v) + bT(w)for allv,w € Vanda, b € F.

6.10 Inner Product Spaces

An inner product on a vector space V is a function (:,-): V x ¥V — F satisfying:

1. (v,v) = 0, with equality if and only if v = 0.

1. (u,v)=(vu).
2. (au+ bv,w) = a(u,w) + b(v,w).
6.11 Applications of Vector Spaces
Vector spaces have wide-ranging applications in:
e  Quantum mechanics (Hilbert spaces)
e  Engineering (Signal processing, Control systems)

e  Machine learning (Feature vector spaces)
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e  Computer graphics (Transformations and projections)

6.12 lllustrative Examples

1. Determine whether the set S={(1,2,3),(4,5,6)} is a basis for R®.

Solution:

To check if S = {(1,2,3), (4,5,6)} is a basis for R*, we need to check two things:
e Linear independence.
e  Spanning R3.

Step 1: Linear independence check.

The set S contains only two vectors, so we cannot form a basis for R3, since R has dimension 3.
A basis for R® must have three linearly independent vectors. However, we will still check if
these two vectors are linearly independent.

To check for linear independence, we need to solve the equation:
C1(1,2,3) + C2(4‘,5,6) == (0,0,0)

This gives the system of equations:

C1+4‘C2=O
2C1+5C2=O
3C1+6C2=0

Solving the first equation for c¢;, we get c; = —4c,. Substituting this into the second equation:
2(—4c;) +5¢, =0= —8c, +5¢, =0= -3¢, =0=c¢, =0

Therefore, c, = 0and ¢; = 0.

Since the only solution is ¢; = ¢, = 0, the vectors are linearly independent.

Step 2: Conclusion.

Since the set S contains only two vectors and we are working in R3, the set cannot span R3
because it does not have enough vectors to span a 3-dimensional space.

Therefore, S is not a basis for R3.

2. Provethat S = {(1,0,0),(0,1,0),(0,0,1)} is a basis for R®.
Solution:

To prove that S = {(1,0,0), (0,1,0), (0,0,1)} is a basis for R3, we need to verify that:
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e ThesetS is linearly independent.
e  Theset S spans R3.
Step 1: Linear independence.
We check if the set S is linearly independent by solving the equation:
¢1(1,0,0) + ¢,(0,1,0) + ¢5(0,0,1) = (0,0,0)

This leads to the system of equations:

C]_:O
C2=O
C3=O

The only solution is ¢; = ¢, = ¢3 = 0, which shows that the set S is linearly independent.
Step 2: Spanning.

To show that S spans R3, we need to show that any vector (x,y,z) € R3 can be written as a
linear combination of the vectors in S. Let:

(x,y,2z) = ¢,(1,0,0) + ¢,(0,1,0) + ¢5(0,0,1)

This gives the system of equations:

cL=x
=Y
C3—Z

Therefore, any vector in R3 can be written as a linear combination of (1,0,0), (0,1,0), (0,0,1),
meaning S spans R3.

Conclusion:

Since S is both linearly independent and spans R3, S is a basis for R3.

3. Find a basis for the subspace W={(x,y,2)eR?, x — y + z = 0}
Solution:

The subspace W is defined by the equation x — y + z = 0. We will find a basis for this subspace
and determine its dimension.

Step 1: Express the equation in terms of free variables.

From x —y + z = 0, we can solve for x:
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X=y—2z
Therefore, every vector in W can be written as:

(x,y,2) =(y—27vy,z) =vy(1,1,0) + z(—1,0,1)
Step 2: Find linearly independent vectors.

The vectors (1,1,0) and (—1,0,1) are linearly independent because neither is a scalar multiple of
the other. Thus, these two vectors form a basis for W/.

Step 3: Determine the dimension of /.

Since the basis for W consists of two vectors, the dimension of W is 2.

Conclusion:

A basis for W is {(1,1,0), (—1,0,1)}. The dimension of W is 2.

4. Prove that the set of all 2x2 matrices with real entries M2(R) forms a vector space.
Solution:

To prove that M, (R), the set of all 2x2 matrices with real entries, is a vector space, we must
verify that it satisfies all the axioms of a vector space.

Step 1: Closure under addition.

LetA = (‘Cl Z) and B = (; i) be two matrices in M,(R). Their sum is:

A+B=(a+e b+f>

c+g d+0

Since the sum of two real numbers is a real number, the resulting matrix is also a 2x2 matrix with
real entries. Thus, A + B € M,(R).

Step 2: Closure under scalar multiplication.

LetA = (Ccl Z) be a matrix in M,(R), and let r € R be a scalar. The scalar multiple is:
_(ra b
rd = (rc rd)

Since the product of a real number and a real number is a real number, the resulting matrix is a
2x2 matrix with real entries. Thus, rA € M, (R).

Step 3: Verify other axioms.

The other axioms (commutativity and associativity of addition, existence of additive identity and
inverses, distributivity of scalar multiplication, and multiplicative identity of scalar
multiplication) can be easily verified using properties of real numbers and matrix operations.
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Conclusion:

Since M, (R) satisfies all the axioms of a vector space, we conclude that the set of all 2x2
matrices with real entries forms a vector space.

5. Determine whether the set § = {(1,2, 3), (4,5, 6)} is a basis for R3.
Solution:
To check if S = {(1,2,3), (4,5,6)} is a basis for R*, we need to check two things:
e Linear independence.
e  Spanning R3.
Step 1: Linear independence check.

The set S contains only two vectors, so we cannot form a basis for R3, since R has dimension 3.
A basis for R® must have three linearly independent vectors. However, we will still check if
these two vectors are linearly independent.

To check for linear independence, we need to solve the equation:
¢,(1,2,3) + c,(4,5,6) = (0,0,0)

This gives the system of equations:

C1+4C2:O
2C1+5C2=0
3C1+6C2=0

Solving the first equation for c;, we get c; = —4c,. Substituting this into the second equation:
2(—4c;)+5¢, =0= —8c, +5¢, =0= -3¢, =0=¢, =0

Therefore, c, = 0and ¢; = 0.

Since the only solution is ¢; = ¢, = 0, the vectors are linearly independent.

Step 2: Conclusion.

Since the set S contains only two vectors and we are working in R3, the set cannot span R3
because it does not have enough vectors to span a 3-dimensional space.

Therefore, S is not a basis for R3.
6. Prove that S = {(1,0,0),(0,1,0), (0,0, 1)} is a basis for R3.
Solution:

To prove that S = {(1,0,0), (0,1,0), (0,0,1)} is a basis for R3, we need to verify that:
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e ThesetS is linearly independent.
e  Theset S spans R3.
Step 1: Linear independence.
We check if the set S is linearly independent by solving the equation:
¢1(1,0,0) + ¢,(0,1,0) + ¢5(0,0,1) = (0,0,0)

This leads to the system of equations:

C]_:O
C2=O
C3=O

The only solution is ¢; = ¢, = ¢3 = 0, which shows that the set S is linearly independent.
Step 2: Spanning.

To show that S spans R3, we need to show that any vector (x,y,z) € R3 can be written as a
linear combination of the vectors in S. Let:

(x,y,2z) = ¢,(1,0,0) + ¢,(0,1,0) + ¢5(0,0,1)

This gives the system of equations:

cL=x
=Y
C3—Z

Therefore, any vector in R3 can be written as a linear combination of (1,0,0), (0,1,0), (0,0,1),
meaning S spans R3.

Conclusion:

Since S is both linearly independent and spans R3, S is a basis for R3.

7. Find a basis for the subspace W = {(x,y,2) € R x—-y+z= 0}.
Solution:

The subspace W is defined by the equation x — y + z = 0. We will find a basis for this subspace
and determine its dimension.

Step 1: Express the equation in terms of free variables.

From x —y + z = 0, we can solve for x:
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X=y—2z
Therefore, every vector in W can be written as:

(x,y,2) =(y—27vy,z) =vy(1,1,0) + z(—1,0,1)
Step 2: Find linearly independent vectors.

The vectors (1,1,0) and (—1,0,1) are linearly independent because neither is a scalar multiple of
the other. Thus, these two vectors form a basis for .

Step 3: Determine the dimension of /.
Since the basis for W consists of two vectors, the dimension of W is 2.
Conclusion:

A basis for W is {(1,1,0), (—1,0,1)}. The dimension of W is 2.

8. Prove that the set of all 2x2 matrices with real entries M, (R) forms a vector space.
Solution:

To prove that M, (R), the set of all 2x2 matrices with real entries, is a vector space, we must
verify that it satisfies all the axioms of a vector space.

Step 1: Closure under addition.

LetA = (Ccl Z) and B = (; {1) be two matrices in M,(R). Their sum is:

A+B:(a+e b+f>

c+g d+h

Since the sum of two real numbers is a real number, the resulting matrix is also a 2x2 matrix with
real entries. Thus, A + B € M,(R).

Step 2: Closure under scalar multiplication.

LetA = (Ccl Z) be a matrix in M,(R), and let r € R be a scalar. The scalar multiple is:
_(ra b
rd = (rc rd)

Since the product of a real number and a real number is a real number, the resulting matrix is a
2x2 matrix with real entries. Thus, rA € M, (R).

Step 3: Verify other axioms.

The other axioms (commutativity and associativity of addition, existence of additive identity and
inverses, distributivity of scalar multiplication, and multiplicative identity of scalar
multiplication) can be easily verified using properties of real numbers and matrix operations.
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Conclusion:
Since M, (R) satisfies all the axioms of a vector space, we conclude that the set of all 2x2
matrices with real entries forms a vector space.

9.LetA = (; i) and B = (3 g) FindA + B and 2A — B.

Solution:

First, compute A + B:

wrn=(C (15 219-(5 )

Now, compute 24 — B:

21-8=(5 5)-G 9= s29-C V)
Conclusion:

6 8

Thesum A+ B = (10 12

) and the difference 24 — B = (:i _02)

10. Prove that if a set § is linearly independent, then every subset of § is linearly
independent.

Solution:

LetS = {vy, vy, ..., v, } be a linearly independent set. We need to prove that every subset of S is
linearly independent.

Suppose T = {vy, v,, ..., Ui } IS @ subset of S. We want to prove that T is linearly independent. By
definition, T is linearly independent if the only solution to the equation:

C1V1 + CoUy + -+ v, = 0
iISc;=cy;=+=¢,=0.
Since S is linearly independent, the equation

C1V1 + Uy + -+ v, =0
has only the trivial solutionc¢; = ¢, =+ =c¢, = 0.

Since T is a subset of S, the equation c;v; + c,v, + -+ + ¢, v, = 0 is a restriction of the linear
combination equation for S. Therefore, the only solution to this equationisalso ¢c; = ¢, = -+ =
¢, = 0, which shows that T is linearly independent.
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Conclusion:
If a set S is linearly independent, then every subset of S is linear
11. Prove that the set of all n X n invertible matrices does not form a vector space.
Solution: A vector space must be closed under addition and scalar multiplication.
Consider two invertible matrices A and B. Their sum A + B may not be invertible. For example:
o -1 o
A_[O 1]’3_[0 —1]
Then,
_ 10
A+B—b

which is not invertible. Hence, the set of invertible matrices is not closed under addition and
does not form a vector space.

12. Prove that if U and W are subspaces of V, then U N W is also a subspace of V.
Solution: We verify the subspace conditions:
e Contains the zero vector: Since U, W are subspaces, they contain 0. Thus, 0 e Un W/

e  Closed under addition: If uuw e UnW,thenu,w € U and u,w € W. Since U and W
are subspaces,u+weUandu+weW,sou+welnW.

e  Closed under scalar multiplication: Ifv e UnW andc € F,thencv € Uand cv € W.
Thus,cve UnW.

Since all conditions hold, U N W is a subspace of V.

13. Find a basis and dimension of the space of all upper triangular 3 X 3 matrices.
Solution: An upper triangular 3 x 3 matrix is of the form:

a b c
Ode].

00 f

A=

There are six independent parameters a, b, ¢, d, e, f, so the space has dimension 6.
A basis consists of matrices with a single nonzero entry in each independent position:

1 0 0J0 1 0Jf0 0 130 0 O0]Jf0 O O]J[O0O O O
o o0 0,0 0 0Of,j0 0 0,0 1 0f,|J0 0 1, (0 0 O

0 0 ollo 0 ollo 0 ollo 0 ollo 0o ollo 0o 1
Thus, the dimension is 6.
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14. Prove that every finite-dimensional vector space is isomorphic to F™ for some n.

Solution: Let V be a finite-dimensional vector space with basis B = {vy, v,, ..., v, }. Define a
map:

¢:V - F' v =cv; + vy + -+ vy = (€1, C2, o) Cp)-

- Injectivity: If ¢(v) = 0, then c;v; + cyv, + -+ cpv,, = 0, implyingc; = ¢, =+ =¢, =0,
so v = 0. Thus, ¢ is injective. - Surjectivity: Any (cq, c5, ..., ¢,) € F™ corresponds to c; v, +
CUy + -+ cvy, €V, S0 ¢ IS surjective.

Since ¢ is a bijective linear map, V = F™.
15. Show that the row space of a matrix is equal to the column space of its transpose.

Solution: Let A be an m X n matrix. Its row space is the subspace spanned by its row vectors.
The column space of AT consists of the same vectors as the row space of A, since transposing a
matrix swaps rows and columns. Thus,

Row space ofA = Column space ofAT.
16. Prove that if dimV = n, then any generating set of V with n elements is a basis.

Solution: Let S = {v,, v,, ..., v, } be a spanning set of V. - If S were linearly dependent, we could
remove an element without losing the spanning property, contradicting that VV has dimension n. -
Hence, S must be linearly independent and is therefore a basis.

Exercise 6

1. Which of the following is NOT a requirement for a set to be a vector space?
(a) Closure under vector addition
(b) Closure under scalar multiplication
(c) The presence of a multiplicative inverse for every vector
(d) The existence of a zero vector

Answer: (C)

2. IfasetV isavector space, then which of the following is always true?
() V contains exactly one zero vector
(b) V contains at least one zero vector

(c) V does not contain a zero vector
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(d) V contains infinitely many zero vectors
Answer: (a)
A subset W of a vector space V is a subspace if:
(a) W is closed under addition and scalar multiplication
(b) W is non-empty
(c) W contains only the zero vector
(d) W is finite
Answer: (a)
The set of all solutions to the equation ax + by = 0 in R? forms:
(a) A vector space
(b) A subspace of R?
(c) A basis of R?
(d) Not a vector space
Answer: (b)
A basis of a vector space is:
(a) A set of linearly dependent vectors
(b) A set of vectors that spans the space
(c) A maximal set of linearly dependent vectors
(d) A set that contains only the zero vector
Answer: (b)
The dimension of a vector space is:
(a) The number of vectors in the spanning set
(b) The number of vectors in any basis
(c) The number of linearly dependent vectors in the space
(d) The number of vectors in the largest basis

Answer: (b)
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10.

11.

If a set of vectors spans a vector space, then:
() The set must be linearly independent
(b) The set must be a basis
(c) The set must be finite
(d) Every vector in the space can be written as a linear combination of the set
Answer: (d)
The rank of a matrix is:
(a) The number of rows in the matrix
(b) The number of nonzero rows in its row echelon form
(c) The number of pivot columns in its row echelon form
(d) The number of zero rows in the matrix
Answer: (C)
A set of vectors is linearly dependent if:
(a) At least one vector can be written as a linear combination of the others
(b) The determinant of the matrix formed by these vectors is nonzero
(c) All the vectors in the set are nonzero
(d) The vectors span the entire space
Answer: (a)
The trivial solution to a homogeneous system of linear equations is:
(a) The zero solution
(b) Any nonzero solution
(c) The determinant of the coefficient matrix
(d) The dimension of the null space
Answer: (a)
A vector space with a finite basis is called:

(@) Infinite-dimensional
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12.

13.

14.

15.

(b) One-dimensional
(c) Finite-dimensional
(d) Unbounded

Answer: (c)

If the number of vectors in a set is greater than the dimension of the space, then the set is:

(a) Linearly independent
(b) Linearly dependent
(c) A basis
(d) Empty
Answer: (b)
The zero vector in a vector space is unique because:
(a) There can be multiple zero vectors
(b) It satisfies the axioms of a vector space
(c) The zero vector depends on the basis
(d) The definition of a vector space requires exactly one zero vector
Answer: (d)
The standard basis for R3 consists of:
(@) Any three linearly independent vectors
(b) Three mutually orthogonal unit vectors
(c) Any three vectors that span R3
(d) The zero vector
Answer: (b)
A subspace of a vector space must:
(a) Contain the zero vector
(b) Be finite

(c) Contain at least two linearly independent vectors
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(d) Contain only nonzero vectors
Answer: (a)
16. The column space of a matrix is:
(a) The space spanned by its row vectors
(b) The space spanned by its column vectors
(c) The space spanned by its eigenvectors
(d) The set of all possible linear transformations of the matrix
Answer: (b)
17. The rank-nullity theorem states that:
(@) rank(A) + nullity(4) = number of columns ofA
(b) rank(A) + nullity(A) = number of rows ofA
(c) rank(A) = nullity(A4)
(d) The rank is always equal to the nullity

Answer: (a)

Short Answer Questions
1. Define a vector space with an example.

2. What is a subspace? Give an example.

3. State the conditions for a subset of a vector space to be a subspace.
4. Define linear dependence and linear independence of vectors.

5. What is the dimension of a vector space? How is it determined?

6. Give an example of a vector space of dimension 3.

7. What is the zero vector in a vector space, and why is it unique?

8. If a set of vectors spans a vector space, what does it mean?

9. Define basis of a vector space with an example.

10. State and explain the rank-nullity theorem in brief.
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Long Answer Questions
1. Prove that the intersection of two subspaces of a vector space is also a subspace.

2. Show that the set of all polynomials of degree at most n forms a vector space.

3. Prove that a set of vectors in a vector space is linearly dependent if and only if at least
one vector in the set can be expressed as a linear combination of the others.

4. Find a basis and the dimension of the solution space of the system:
x+2y+3z=02x+3y+4z=0.

5. Prove that the union of two subspaces is not necessarily a subspace.

6. Explain with proof: Any finite-dimensional vector space has a basis.

7. Find the dimension and a basis for the null space of the matrix:

1 2 3
A=12 4 6
3 6 9
8. Prove that any basis of a finite-dimensional vector space has the same number of

elements.

9. Let{vy,v,,v3} be alinearly dependent set of vectors. Show that at least one of them can
be written as a linear combination of the others.

10. If B = {vy, vy, ..., v, } is @ basis of a vector space V, prove that every vector in V can be
uniquely expressed as a linear combination of the vectors in .
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7.1. Introduction

An orthogonal vector space is an inner product space where the concept of orthogonality
(perpendicularity) between vectors is well-defined. This concept plays a crucial role in various
domains, including linear algebra, computer graphics, machine learning, and signal processing.

Orthogonality is a fundamental property that simplifies computations, facilitates geometric
interpretations, and underpins various mathematical and engineering techniques. The study of
orthogonal vector spaces enables efficient transformations, decompositions, and optimizations in
numerous applications.

7.2 Dot product of R"
The inner product or dot product of R" is a function (, ) defined by
(U, vy=aibs + asbp + -+ anby for u =[as, a,...,an]", v=1[by, bz, ...,bs]" ER".
The inner product (, ) satisfies the following properties:
(1) Linearity: (au + bv,w) = a{u,w) + b(v,w).
(2) Symmetric Property: (u, v)= (v, u).
(3) Positive Definite Property: For any u €V, (u, u)>0; and (u, u)=0 if and only if u = 0.

With the dot product we have geometric concepts such as the length of a vector, the angle between
two vectors, orthogonality, etc. We shall push these concepts to abstract vector spaces so that
geometric concepts can be applied to describe abstract vectors.

7.3. Inner product spaces

Definition 2.1. An inner product of a real vector space V is an assignment that for any two
vectors

u,Vv eV, there is a real number (u, v), satisfying the following properties:

(4) Linearity: (au + bv,w) = a(u,w) + b(v,w).

(5) Symmetric Property: (u, V)= (v, u).

(6) Positive Definite Property: For any u €V, (u, u)>0; and (u, u)=0 if and only if u =
OS. The vector space V with an inner product is called a (real) inner product space.

Example 7.3.1. For x = (2) Y = (i;) € R?, define

(x,y) = 2x1y1 — x1y2 — x2y1 + 5x2y2.
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Then, .’ is an inner product on R?. It is easy to see the linearity and the symmetric property.
As forlthe positive definite property, note that

< Xp, Xy > = 2x% — 2x,x, + 5x3
= (x1 + Xz)2 + (X1 —2X2)2 >0.
Moreover, (x, x)=0 if and only
if X+ X2 =0, X1-2x2=0,

which implies x1 =x2 =0, i.e., x=0. This inner product on R? is different from the dot product
of R?.

For each vector u € V', the norm (also called the length) of u is defined as the number

[lul] = vV<uu>.

If jJu|= 1, we call u a unit vector and u is said to be normalized. For any nonzero vector
v €V, we have the unit vector

~ .V

Il

This process is called normalizing v.
LetB = uy,u,,...,u, be a basis of an n-dimensional inner product space V. For vectors
u,v €V, write

U = xXqUq + XUy + - + XpUy;

V= Yiup + YUy + o+ Yaluy

The linearity implies
n
<u,v>=< XiU; ,z yjuj >
i=1 j=1

—_ n n
= Dim1 D= iy < uup >

<< Uy > o < Uy Up >)

SUpUy > o < Uy Uy >

We call the n X n matrix

the matrix of the inner product <,> relative to the basis B. Thus, using coordinate vectors

[u]B = [xl,xz, '"!xn]Tt [U]B = [)’1: Y2, "'yn]Tﬂ we have

<u,v>=[ultAv]g
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Examples of inner product spaces
Example 7.3.2. The vector space R" with the dot product
<u - v>= a1b1 + azbz + - +anbn,

whereu =[a, az, . . ., an]T , V=[b1, by, ..E bn]T R", is an inner product space. The vector
space R" with this special inner product (dot product) is called the Euclidean n-space, and the
dot product is called the standard inner producton R".

Example 7.3.3. The vector space C[a;b] of all real-valued continuous functions on a closed interval
[a; b] is an inner product space, whose inner product is defined by

<fg>= fabf(t)g(t)dt f,g € Cla, b].

Example 7.3.4. The vector space M,, , of all m x n real matrices can be made into an inner
product space under the inner product

< A,B >=tr(BTA), where A, B € My, ,,.
7.4 Representation of inner product

Theorem 4.1. Let V be an n-dimensional vector space with an inner product <,>, and let A be
the matrix of <, > relative to a basis B. Then for any vectors u; v € V ,

<u,v>= xTAy

where x and y are the coordinate vectors of u and v, respectively, i.e.,x = [u]gandy =
[v]p.

Example 4.1. For the inner product of R3 defined by
(X, Y)= 2Xay1 —X1y2 —Xay1 + 5Xay2,

X1
X2

A=[_21 _51]

The inner product can be written as

where x = ( ) y = (ﬁ) € R?, its matrix relative to the standard basis E ={e;, e,} is

<x,y>=xTAy = (x,%;) [_21 _51] (ii) .

Theorem 4.2. Let V be a nite-dimensional inner product space. Let A;B be matrices of the inner
product relative to bases B, B' of VV , respectively. If P is the transition matrix from B to B’. Then
B = PTAP.

7.5 Cauchy-Schwarz inequality

Theorem 7.5.1 (Cauchy-Schwarz Inequality). For any vectors u; v in an inner product space V,
|< u,v>< ||u||||v||.

Proof: Consider the function

y =yt):=<u+ tv;u +tv>;teR
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Then y(t) =0 by the third property of inner product. Note that y(t) is a quadratic function of t. In
fact,

y)=<u,u + tv> +<tv,u + tv>

=<wu> +2<uv>t+<v,v>t?
Thus, the quadratic equation

<uu> +2<uv>t+<v,v>t:?=0

has at most one solution as y(t) > 0. This implies that its discriminant must be less or equal to zero,
ie.,

R<uv>)l—-4<uyu><vv><0.

The Cauchy-Schwarz inequality follows.

Theorem 7.5.2. The norm in an inner product space V satisfies the following properties:
(N21) |lull = 0 ; and ||u|| =0 if and only if u = 0.

(N2) [[cull = ¢ [ful].

(N3) [l +vll < llull + v

For nonzero vectors u; v 2 V , the Cauchy-Schwarz inequality implies

<u,v>
—1<—F7—<
llull vl

angle p between u and v is defined by

<u,v>

cosg =——
lull vl

The angle exists and is unique.
7.6 Orthogonality

Let V be an inner product space. Two vectors u, v € V are said to be orthogonal if
<u,v>=0.

Example 7.6.1. For inner product space C[—m, ], the functions sin t and cos t are orthogonal as

T
< sint,cost ZJ sint cost dt
-1

— 1 iN2 1 |T —

= sin t|™, =0
Example 7.6.2. Letu = [ay; ay;:::; a,]T € R™. The set of all vector of the Euclidean n-space
R™ that are orthogonal to u is a subspace of R™. In fact, it is the solution space of the single linear
equation

<UX>=a1X; +ax; + -+ ayx, =0
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Let S be a nonempty subset of an inner product space V. We denote by S+ the set of all vectors of
V that are orthogonal to every vector of S, called the orthogonal complement of S in V. In notation,
St={u€evV:<u,v>=0foreveryv € S}

If S contains only one vector u, we write
ut=werV:<uv>=0}

Proposition 7.6.1. Let S be a nonempty subset of an inner product space V. Then the orthogonal
complement S+t is a subspace of V.

Proof: To show that S+ is a subspace. We need to show that S+ is closed under addition and scalar
multiplication. Let u,v € St and c € R. Since :<u,w>=0 and:<v,w >=0forall we S
then

<ut+v,w>=<uw>+<v,w>=0
<cuw>=c<uw>=90
forallw € S. Sou + v, cu € St. Hence St is a subspace of R™.
7.7 0rthogonal sets and bases

Let V be an inner product space. A subset S ={u,, u,, ... u,} of nonzero vectors of V is called
an orthogonal set if every pair of vectors are orthogonal, i.e.

<u,u; >=0forl<ij<n

The set S ={uy, Uy, ... Uy} is said to be orthonormal if
llull =1

Theorem 7.1 (Pythagoras). Let v1, v2, ..., vk be mutually orthogonal vectors. Then
vy + vz + 4 vl < Hlwgll? + w2 + -+ v ]l?

Theorem 7.2. Let v1, v2, ..., vk be an orthogonal basis of a subspace W. Then for any w € W,

<vy,w> <vpw> <vpW>
w = vy + (%) +..+ I

<> L <oy vy> <>

7.8 Orthogonal projection

Definition: Orthogonal projection is a method of mapping a vector onto a subspace in such a way

that the error (difference between the original vector and the projection) is minimized and is
orthogonal (perpendicular) to the subspace. It is widely used in linear algebra, geometry, and
computer graphics.

Mathematical Concepts: Let V be a vector space with an inner product (dot product in Euclidean
space). The orthogonal projection of a vector v onto a subspace W is the vector in W that is
closest to v.
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Projection onto a Line

Given a nonzero vector a that defines a line through the origin, the orthogonal projection of a

vector v onto ais:

Proj,(v) = ga
Where:

e Vv-aisthe dot product of v and a.

e a.aisthe squared magnitude of a.

e Theresult is a vector parallel to a.
Projection onto a Subspace

If W is a subspace spanned by an orthonormal set of vectors {u,,u,, ..., u,}, the orthogonal
projection of v onto W is:

n
Projyv = 2(17. u)u;
i=1

This formula ensures that the projection remains within the subspace.

Properties of Orthogonal Projection

Idempotency: Applying the projection twice gives the same result:
Projy (Projyv) = Projyv

Minimal Distance Property: The difference between v and its projection
Projy,v is the shortest possible.

Orthogonality Condition: The error vector e = v — Proj, v is orthogonal to every vector in W.
Linearity: Projection is a linear transformation.
Projection Matrix

For a subspace defined by an orthonormal basis U = [uy, u,,...,u,] the projection matrix is:
PP =UUT.

For a general subspace with basis vectors in matrix form A, the projection matrix is:
P=A(ATA)'AT.
Applications of Orthogonal Projection
e Least Squares Approximation: Used in regression to find the best-fitting line or plane.
e Computer Graphics: Used in rendering and perspective transformations.
e Signal Processing: Used in noise reduction and filtering.

e Machine Learning: Principal Component Analysis (PCA) relies on orthogonal
projection to reduce dimensions.

e Structural Engineering: Analyzing force components in different directions.
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Example 7.8.1 Given:v=1[3,4],a=[1, 2]
1. Compute the dot products:

v-a=@)(1) +(4)(2)=3+8=11

a-a= () +@)(2)=1+4=5
2. Compute the projection:

11 11 22

Projyv = — * [1,2] = [,—]

7.8.1 Gram-Schmidt Orthogonalization Process

The Gram-Schmidt orthogonalization process is a method used in linear algebra to convert
a set of linearly independent vectors into an orthogonal (or orthonormal) set of vectors while
preserving their span. It is widely used in numerical analysis, quantum mechanics, and signal
processing.

Mathematical Concept: Given a set of linearly independent vectors {v;, vy, ..., v, } inaninner
product space (such as R™), the Gram-Schmidt process constructs an orthogonal set

{uy,uy,...,u,}, and if normalized, an orthonormal set {e,, e, ..., e,}, Where:
Ui

e = ——

C ]

Gram-Schmidt Algorithm
Given a set of linearly independent vectors {v,, v, ..., v,}
e Initialize the first orthogonal vector: u; = v,

e lterate for each vector v; and subtract projections:

i—

u = v — Proju]. v; (forj=1toi—1)
j=1

. _ vi.u]- ]
where Proj, v = -~ U
e Normalization (Optional) to obtain an orthonormal set:

Uj
e; =
C ]

Example 7.8.2 Given: vl =[3,1], v2 = [2,2]
Step 1: Compute First Orthogonal Vector
ul=vl1l=1[31]

Step 2: Compute Projection of v, onto u,

2
2 1)*u1

Proj,, v, = (ul Y

=(6+2)/(9+1)*[31] =[2.4, 0.8]



Step 3: Compute Second Orthogonal Vector
u, = v, —Projy,, v, = [2,2] — [2.4,0.8] = [-0.4,1.2]
Step 4: Normalize to Obtain an Orthonormal Set (Optional)

e _ Uq _ [ 3 1 ]
L7 |~ YWao)' Jao)
Uy 04 1.2
e, = T——= [-— —]
2 gl V16 V16

Properties of Gram-Schmidt Process

e Orthogonality: The resulting set of vectors is orthogonal.

e Preserves Span: The new vectors span the same subspace as the original set.
e Numerical Stability: It can suffer from rounding errors in high dimensions.

e Sequential Computation: Each new vector depends on previous ones, making parallelization
difficult.

Applications of Gram-Schmidt Orthogonalization

e QR Decomposition: Used to decompose a matrix A into an orthogonal matrix Q and an
upper triangular matrix R.

e Principal Component Analysis (PCA): Used to create orthonormal bases in data analysis.
e Signal Processing: Helps in constructing orthogonal signals.
e Solving Least Squares Problems: Useful in linear regression models.

e Quantum Mechanics: Used in orthogonalization of quantum states

7.9 Orthogonal Matrices
Definition: An orthogonal matrix is a square matrix Q

with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors).
Mathematically, it satisfies the condition:

QQ"=Q"Q =1
Where:
i. QT isthe transpose Q

ii.  listhe Identity Matrix.

Key Properties:
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1. Inverse Equals Transpose:
The inverse of an orthogonal matrix Q is its transpose:

Q—l — QT

This makes orthogonal matrices easy to invert.
2. Preservation of Dot Product:
For any vectors x and y, the dot product is preserved under multiplication by QQ:

Q@) -Qy)=xy

3. Preservation of Norm:
The Euclidean norm (length) of a vector is preserved:

I Qx II=Il x II

This implies that orthogonal matrices represent linear transformations that are isometries
(distance-preserving).

4. Determinant:
The determinant of an orthogonal matrix is either +1+1 or —1—1:

det(Q)=%1

1. If det(Q)=1, Q represents a rotation.
2. If det(Q)=—1, Q represents a reflection or a rotation combined with a reflection.
5. Eigenvalues:
The eigenvalues of an orthogonal matrix lie on the unit circle in the complex plane, meaning
they have absolute value 1.
6. Orthonormal Columns and Rows:
The columns and rows of Q form an orthonormal set:

q; q; =6y

where 6ij is the Kronecker delta.

Applications:

1. Rotation and Reflection:
Orthogonal matrices are used to represent rotations and reflections in geometry and computer
graphics.

2. QR Decomposition:
In numerical linear algebra, orthogonal matrices are used in QR decomposition, which is a
method for solving linear systems and eigenvalue problems.

3. Signal Processing:
Orthogonal matrices are used in signal processing for transformations like the Discrete
Fourier Transform (DFT) and wavelet transforms.

4. Principal Component Analysis (PCA):
In statistics and machine learning, orthogonal matrices are used in PCA to reduce the
dimensionality of data while preserving variance.
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Example 7.9.1: 2D Rotation Matrix:
A 2D rotation matrix that rotates vectors by an angle 0 is:

0= [COS 6 —sinf
sinf cosé@
This matrix is orthogonal since QTQ = QQT = 1.

1. Identity Matrix:
The identity matrix | is trivially orthogonal.

2. Householder Reflection:
A Householder matrix, used in numerical algorithms, is an orthogonal matrix that reflects
vectors across a hyperplane.

Theorem 7.9.1. A linear transformation T : V —V is an isometry if and only if T
preserving inner product, i.e., for u,vevVv,
(T (u),T (@) = (u,).

Proof. Note that for vectors u,v eV,

IT (u + v)H2 = (T(u+ v),T(u+v) = g(u),T(u)) + (T (v), T (v)) + 2(T (), T (v))
=T@I% +IT @)% + 2T W),T ),

w+vi2 =(w+vu+v = @u + @)+ 2w = lul? + 1vi2 + 2uv).
It is clear that the length preserving is equivalent to the inner product preserving.

Theorem 7.9.2. Let Q be an n xn matrix. The following are equivalent.
(a) Q is orthogonal.
(b) QT is orthogonal.
(c) The column vectors of Q are orthonormal.
(d) The row vectors of Q are orthonormal.
Proof is beyond the book.

Theorem 7.9.2. Let V be an n-dimensional inner product space with an orthonormal basis B= uj,
Uz, ...,Un .LetT:V —V be a linear transformation. Then T is an isometry if and only if
the matrix of T relative to Bis an orthogonal matrix.

Proof. Let A be the matrix of T relative to the basis B. Then

[T(u1), T(u2),...,T(un)] =[us, uz ..., un]A.

Note that T is an isometry if and orly if T (u1), T (u2),.!., T (un) is an orthonormal basis
of V, and that T (u1), T (uz2), ..., T (un) is an orthonormal basis if and only the transition
matrix A is an orthogonal matrix.
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7.10 Diagonalization of real symmetric matrices

Let V be an n-dimensional real inner product space. A linear mapping T : V — V is said to be
symmetric if
(T (w),v) = (u,T (v))forall uv €V.

Example 7.10.1. Let A be a real symmetric n xn matrix. Let T : R" —R" be defined by T (x) =
AX. Then
T is symmetric for the Euclidean n-space. In fact, for u, v €R", we have

Tw  v= (Au) v = AwTv = u" AT v
= uT Av = u - Av = u - T (V).

Proposition 7.10.1. Let V be an n-dimensional real inner product space with an
orthonormal basis B = {u;,u, ...u,}. Let T : V — V be a linear mapping whose matrix
relative to B is A. Then T is symmetric if and only the matrix A is symmetric.

Proof. Note that

Qi1 o Qan
[T(u1),T(u2)....T(un)]=[u1,u2,...un]<5 )

An1 ** Qnn
Alternatively,

n
T(uj) :Zaijui,forl <j<n
i=1
If T is symmetric, then

aij =<u;, T(w) >=<TW),u; > = a;
So, A is symmetric.

n

< T(u),v > = Z aibjT(ui)uj = Z aibjaji

ij=1 ij=1

Conversely, if A is symmetric, then for vectors u = }j-; a;u;, v = Yj- b;u; we have
n

n
= Z aibjaij =< u,T(v) >

ij=1

Therefore, T is symmetric.
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7.11 Ilustrated examples

1. Find the projection of u = (3, 4) onto v = (1, 2).

u-v

[lvll®

» The projection formulais: Projy,v = (

v

Compute the dot product: u - v=(3x1)+(4x2)=3+8=11
Find |lv|P=(12+22)=1+4=5

llv[|? = (11/5) . (1, 2) = (11/5, 22/5)

2. Verify whether the set of vectors (1, 0, -1), (0, 1, 1), and (1, 1, 0) forms an orthogonal set.
» Vectors are orthogonal if every pair has a dot product of zero.
Checkv; v, = (1 x0) +(O0Xx 1) +(-1x1)=0+0-1=-1=%0
Since v; - v, # 0, the setis not orthogonal.
3. Use the Gram-Schmidt process to orthogonalize the set {(1,1), (1,-1)}.
Solution:
Letv, = (L, 1) andv, = (1,-1).

Setu1 =V = (1,1)

Compute projection of v2 onto ul: Proj, v, = (UZ . )u1

ug Uy
=((@x1)+(-1x1))/((1x1)+(1x1))(11)=(0,0)
Compute u, = v, — Proj,;(v2) = (1,—-1) — (0,0) = (1,—-1)
Thus, the orthogonal set is {(1,1), (1,-1)}, which is already orthogonal.
4. Find a unit vector orthogonal to both a = (1,2,3) and b = (4,5,6).
» A vector orthogonal to both can be found using the cross product:
i j ok
axXb= [1 2 3]
4 5 6
=i(2Xx6 —3%x5) —j(1x6 —3%x4)+ k(1x5 — 2x4)
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= (-3,6,—3)

Now, find the unit vector: ||a x b|| =+/((=3)2 + 62 + (—3)2) =./(54) = 3V6

1 2 1
(—ﬁ»ﬁ,—\/—ﬁ))-

Unit vector =
5. Compute the inner product of u = (1, 2, -1) and v=(3, 0, 4) in R3,
» The inner product (dot product) is given by:
(wv)y = 1 x3)+@2x0) +(-1x4)
=3+0—-—4=-1
Thus, (u,v) = —1.
6. Show that the function (f, g) = folf(x)g(x) dx dx defines an inner product.

» To be an inner product, (f, g) must satisfy:
I.  Linearity: (af + bg,h) = a(f,h) + b(g, h) (holds by properties of integrals).
ii.  Symmetry: (f, g) = (g, f) (holds because multiplication is commutative).
iii.  Positivity: (f, f) > 0 and (f, f) = 0 if and only if f(x) = 0 (follows from integral properties).

Since all conditions hold, this defines a valid inner product.

7. Find the norm of the vector u = (3, -4, 12) in the inner product space R3.

> The norm is given by ||ul| = /((w, u)).

wu) = (3% + (—4)* + 122) = 9 + 16 + 144 = 169.

llul| = V(169) = 13,
Thus, the norm of u is 13.

8. Find the angle between the vectors u = (1, 2, 2) and v = (2, 1, 3) in an inner product space.

{u,v)

(Ul v

» The angle 0 is given by cos(0) =

(U, V) = (1x2) + (2x1) + (2x3) =2 + 2 + 6 = 10.

llul] = (12 + 22+ 22) =9 = 3.

llvl] =22+ 12 + 32) =14.
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10

cos(0) = m

Thus, the angle can be found using
10
1

@ =cos t———.
3V14

9. Verify if the set {(1,1), (-1,1)} is an orthonormal set in RZ under the standard inner product.

» A setis orthonormal if each vector has norm 1 and they are mutually orthogonal.

Find norms: [|(L,D| = (12 + 13) =J/@),lI-LDIl =J/(D?+ 12 =/(2).

i ey = (L L — (1L L
Since norms are not 1, normalize: u, = (ﬁ,ﬁ),uz = ( \/E’\/E)'
Check orthogonality: (ui, uz) = (1/N2)(-1/32) + (1N2)(1~N2) = -1/2 + 1/2 = 0.

Since they are unit vectors and orthogonal, they form an orthonormal set.

Exercises
e MCQ type questions:

1. Two vectors and in an inner product space are orthogonal if:

Auv=0
Buv=1
CQuv=-1
D)u.v>0

2. In Euclidean space R™, the dot product of two vectors and is given by:
A) Ya;b;
B) Xaf + Xb}
C) Ya;b?
D) ¥.(a; + by)
3. If aset of nonzero vectors is mutually orthogonal, it is called:
A) An independent set
B) A unit vector set
C) An orthogonal set
D) A basis
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4. An orthonormal set is an orthogonal set where each vector is:
A) A unit vector
B) Linearly dependent
C) Equal to zero
D) Parallel to others
5. The Gram-Schmidt process is used to:
A) Compute determinants
B) Convert a set of vectors into an orthonormal basis
C) Solve linear equations
D) Compute eigenvalues

6. The projection of a vector onto another vector is given by:

A) ﬁ
B) ﬁv
C) llullliv]]
D)u+v
7. Inan inner product space, the norm of a vector is given by:
A |lvl| =v.v
B) lvll =vVv.v
C) vl = Xv;

D) llv]| = v.v?

8. If two vectors and are orthogonal, their angle satisfies:

A) 6 = 0°

B) 6 = 90°
C) 6 = 180°
D) = 45°

9. The standard basis vectors in R3 , e; = (1,0,0), e, = (0,1,0), e; = (0,0,1) are:
A) Orthogonal but not orthonormal
B) Orthonormal
C) Linearly dependent
D) Zero vectors
10. If and are orthogonal, their dot product is:
A) Always positive
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B) Always negative
C) Always zero
D) Undefined

e Short Answer type Questions:

1. Define an inner product space with an example.

2. What are the properties of an inner product?

3. State the Cauchy-Schwarz inequality.

4. What is the norm of a vector in an inner product space?

5. When are two vectors said to be orthogonal?

6. State and explain the Pythagorean theorem in inner product spaces.

7. Define an orthonormal set. Give an example.

8. What is the Gram-Schmidt process used for?

9. If (u,v) =0, what does that imply about the vectors u and v?

10. What is the geometric significance of orthogonality in R* or R*?

11. Find the projection of u=(9, 11) onto v = (1, 0).

12. Given vectors u=(1,2), v=(3,4), compute the inner product (u,v) in R using the standard inner
product.

13. Find the norm of the vector v=(3,4,0) in R* with the standard inner product.

14. Determine whether the vectors u=(1,2,3) and v=(2,—1,0) are orthogonal in R?.

15. Verify the Pythagorean theorem for the vectors u=(2,1), v=(—1,2) in R2.

Answers:

MCQ type questions:

1-A, 2-A, 3-C, 4-A, 5-B, 6-B, 7-B, 8-B, 9-B, 10-C.
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10.
11.
12.

13.
14.
15.

16.
17.

18.
19.
20.
21.
22.
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